版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.对于反比例函数,下列说法不正确的是()A.图像分布在第一、三象限 B.当时,随的增大而减小C.图像经过点 D.若点都在图像上,且,则2.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y1)是函数图象上的两点,则y1<y1;④﹣<a<﹣.其中正确结论有()A.1个 B.1个 C.3个 D.4个3.下列计算正确的是()A. B.C. D.4.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.5.如图,已知AB是ʘO的直径,点P在B的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C.若⊙O的半径为1.BC=9,则PA的长为()A.8 B.4 C.1 D.56.如图中几何体的主视图是()A. B. C. D.7.若关于的一元二次方程有实数根,则的值不可能是()A. B. C.0 D.20188.不透明袋子中有个红球和个蓝球,这些球除颜色外无其他差别,从袋子中随机取出个球是红球的概率是()A. B. C. D.9.下列二次根式中,与是同类二次根式的是A. B. C. D.10.下列说法正确的是()A.“任意画一个三角形,其内角和为”是随机事件B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足为点D,如果BC=4,sin∠DBC=,那么线段AB的长是_____.12.一个质地均匀的小正方体,六个面分别标有数字“”“”“”“”“”“”,随机掷一次小正方体,朝上一面的数字是奇数的概率是_____.13.在中,,,,则的长是__________.14.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On均与直线l相切,设半圆O1,半圆O2,…,半圆On的半径分别是r1,r2,…,rn,则当直线l与x轴所成锐角为30时,且r1=1时,r2017=_______.15.正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、C4分别在抛物线y=x2和y轴上,若点C1(0,1),则正方形A3B3C4C3的面积是________.16.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该生此次实心球训练的成绩为_______米.17.若关于的一元二次方程没有实数根,则的取值范围是__________.18.把方程2x2﹣1=x(x+3)化成一般形式是_________.三、解答题(共66分)19.(10分)如图,中,,以为直径作半圆交与点,点为的中点,连结.(1)求证:是半圆的切线;(2)若,,求的长.20.(6分)如图,在中,点、、分别在边、、上,,,.(1)当时,求的长;(2)设,,那么__________,__________(用向量,表示)21.(6分)为了测量竖直旗杆的高度,某数学兴趣小组在地面上的点处竖直放了一根标杆,并在地面上放置一块平面镜,已知旗杆底端点、点、点在同一条直线上.该兴趣小组在标杆顶端点恰好通过平面镜观测到旗杆顶点,在点观测旗杆顶点的仰角为.观测点的俯角为,已知标杆的长度为米,问旗杆的高度为多少米?(结果保留根号)22.(8分)如图,在长方形中,,,动点、分别从点、同时出发,点以2厘米/秒的速度向终点移动,点以1厘米/秒的速度向移动,当有一点到达终点时,另一点也停止运动.设运动的时间为,问:(1)当秒时,四边形面积是多少?(2)当为何值时,点和点距离是?(3)当_________时,以点、、为顶点的三角形是等腰三角形.(直接写出答案)23.(8分)如图,∠MAN=90°,,分别为射线,上的两个动点,将线段绕点逆时针旋转到,连接交于点.(1)当∠ACB=30°时,依题意补全图形,并直接写出的值;(2)写出一个∠ACB的度数,使得,并证明.24.(8分)为深化课程改革,提高学生的综合素质,我校开设了形式多样的校本课程.为了解校本课程在学生中最受欢迎的程度,学校随机抽取了部分学生进行调查,从A:天文地理;B:科学探究;C:文史天地;D:趣味数学;四门课程中选你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中A部分的圆心角是度;(2)请补全条形统计图;(3)根据本次调查,该校400名学生中,估计最喜欢“科学探究”的学生人数为多少?(4)为激发学生的学习热情,学校决定举办学生综合素质大赛,采取“双人同行,合作共进”小组赛形式,比赛题目从上面四个类型的校本课程中产生,并且规定:同一小组的两名同学的题目类型不能相同,且每人只能抽取一次,小琳和小金组成了一组,求他们抽到“天文地理”和“趣味数学”类题目的概率是多少?(请用画树状图或列表的方法求)25.(10分)如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为,AB=4.(1)求点B,P,C的坐标;(2)求证:CD是⊙P的切线.26.(10分)如图,在口ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD(1)求证:△ABF∽△CEB(2)若△DEF的面积为2,求△CEB的面积
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=8>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.【点睛】本题考查了反比例函数的性质,对于反比例函数,(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.2、D【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】①由开口可知:a<0,∴对称轴x=−>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵抛物线与x轴交于点A(-1,0),对称轴为x=1,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<1<,且(,y1)关于直线x=1的对称点的坐标为(,y1),∵<,∴y1<y1,故③正确,④∵−=1,∴b=-4a,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵1<c<3,∴1<-5a<3,∴-<a<-,故④正确故选D.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.3、C【分析】分别根据合并同类项的法则、完全平方公式、幂的乘方以及同底数幂的乘法化简即可判断.【详解】A、,故选项A不合题意;B.,故选项B不合题意;C.,故选项C符合题意;D.,故选项D不合题意,故选C.【点睛】本题考查了合并同类项、幂的运算以及完全平方公式,熟练掌握各运算的运算法则是解答本题的关键.4、C【解析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.5、C【分析】连接OD,利用切线的性质可得∠PDO=90°,再判定△PDO∽△PCB,最后再利用相似三角形的性质列方程解答即可.【详解】解:连接DO∵PD与⊙O相切于点D,∴∠PDO=90°,∵BC⊥PC,∴∠C=90°,∴∠PDO=∠C,∴DO//BC,∴△PDO∽△PCB,∴,设PA=x,则,解得:x=1,∴PA=1.故答案为C.【点睛】本题考查了圆的切线性质以及相似三角形的判定与性质,证得△PDO∽△PCB是解答本题的关键.6、D【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看应得到第一层有3个正方形,第二层从左面数第1个正方形上面有1个正方形,故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7、A【分析】由题意直接根据一元二次方程根的判别式,进行分析计算即可求出答案.【详解】解:由题意可知:△==4+4m≥0,∴m≥-1,的值不可能是-2.故选:A.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式进行分析求解.8、A【解析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有个球,红球有个,所以,取出红球的概率为,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.9、C【分析】根据同类二次根式的定义即可判断.【详解】A.=,不符合题意;B.,不符合题意;C.=,符合题意;D.=,不符合题意;故选C.【点睛】此题主要考查同类二次根式的识别,解题的关键是熟知二次根式的性质进行化简.10、C【分析】根据必然事件,随机事件,可能事件的概念解题即可.【详解】解:A.“任意画一个三角形,其内角和为”是不可能事件,错误,B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖,可能事件不等于必然事件,错误,C.“篮球队员在罚球线上投篮一次,投中”为随机事件,正确,D.投掷一枚质地均匀的硬币100次,正面向上的次数可能是50次,错误,故选C.【点睛】本题考查了必然事件,随机事件,可能事件的概念,属于简单题,熟悉概念是解题关键.二、填空题(每小题3分,共24分)11、2.【分析】在中,根据直角三角形的边角关系求出CD,根据勾股定理求出BD,在在中,再求出AB即可.【详解】解:在Rt△BDC中,∵BC=4,sin∠DBC=,∴,∴,∵∠ABC=90°,BD⊥AC,∴∠A=∠DBC,在Rt△ABD中,∴,故答案为:2.【点睛】考查直角三角形的边角关系,勾股定理等知识,在不同的直角三角形中利用合适的边角关系式正确解答的关键.12、.【解析】直接利用概率求法进而得出答案.【详解】一个质地均匀的小正方体,六个面分别标有数字“”“”“”“”“”“”,随机掷一次小正方体,朝上一面的数字是奇数的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确掌握概率公式是解题关键.13、【分析】根据cosA=可求得AB的长.【详解】解:由题意得,cosA=,∴cos45°=,解得AB=.故答案为:.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.14、【详解】分别作O1A⊥l,O2B⊥l,O3C⊥l,如图,∵半圆O1,半圆O2,…,半圆On与直线l相切,∴O1A=r1,O2B=r2,O3C=r3,∵∠AOO1=30°,∴OO1=2O1A=2r1=2,在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,∴r2=3,在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,∴r3=9=32,同理可得r4=27=33,所以r2017=1.故答案为1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了从特殊到一般的方法解决规律型问题.15、2+.【分析】先根据点C1(0,1)求出A1的坐标,故可得出B1、A2、C2的坐标,由此可得出A2C2的长,可得出B2、C3、A3的坐标,同理即可得出A3C3的长,进而得出结论.【详解】∵点(0,1),四边形,,均是正方形,点、、和点、、、分别在抛物线和y轴上,∴(1,1),(0,2),∴(,2),∴(0,2+),∵点的纵坐标与点相同,点在二次函数的图象上,∴(,),即,∴.故答案为:2+.【点睛】本题考查的是二次函数与几何的综合题,熟知正方形的性质及二次函数图象上点的坐标特点是解答此题的关键.16、1【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x的值即可.【详解】解:当时,,解得,(舍去),.故答案为1.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.17、【分析】根据根判别式可得出关于的一元一次不等式组,解不等式组即可得出结论.【详解】由于关于一元二次方程没有实数根,∵,,,∴,解得:.故答案为:.【点睛】本题考查了一元二次方程为常数)的根的判别式.当0,方程有两个不相等的实数根;当0,方程有两个相等的实数根;当0,方程没有实数根.18、x2﹣3x﹣1=1【解析】2x2﹣1=x(x+3),2x2﹣1=x2+3x,则2x2﹣x2﹣3x﹣1=1,故x2﹣3x﹣1=1,故答案为x2﹣3x﹣1=1.三、解答题(共66分)19、(1)见解析;(2)1.【分析】(1)连接OD,OE,BD,证△OBE≌△ODE(SSS),得∠ODE=∠ABC=90°;(2)证△DEC为等边三角形,得DC=DE=2.【详解】(1)证明:连接OD,OE,BD,
∵AB为圆O的直径,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,E为斜边BC的中点,
∴DE=BE,
在△OBE和△ODE中,
,
∴△OBE≌△ODE(SSS),
∴∠ODE=∠ABC=90°,
则DE为圆O的切线;
(2)在Rt△ABC中,∠BAC=30°,
∴BC=AC,
∵BC=2DE=4,
∴AC=8,
又∵∠C=10°,DE=CE,
∴△DEC为等边三角形,即DC=DE=2,
则AD=AC-DC=1.【点睛】考核知识点:切线的判定和性质.20、(1);(2),【分析】(1)利用平行线分线段成比例定理求解即可.
(2)利用三角形法则求解即可.【详解】(1)∵DE∥BC,EF∥AB,
∴四边形DEFB是平行四边形,
∴DE=BF=5,
∵AD:AB=DE:BC=1:3,
∴BC=15,
∴CF=BC-BF=15-5=1.
(2)∵AD:AB=1:3,
∴,
∵EF=BD,EF∥BD,
∴,
∵CF=2DE,
∴,
∴.【点睛】此题考查平面向量,平行向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、【分析】作交于点,则,,易得,根据光的反射规律易得,可得△CDE和三角形ABE均为等腰直角三角形,设,则,,,在中有,代入求解即可.【详解】解:如图作交于点,则,在中,易求得由光的反射规律易得,在中,易求得设,则,,在中,,即,解得:即旗杆的高度为.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义以及光的反射规律,本题属于中等题型22、(1)5厘米2;(2)秒或秒;(3)秒或秒或秒或秒.【分析】(1)求出BP,CQ的长,即可求得四边形BCQP面积.(2)过Q点作QH⊥AB于点H,应用勾股定理列方程求解即可.(3)分PD=DQ,PD=PQ,DQ=PQ三种情况讨论即可.【详解】(1)当t=1秒时,BP=6-2t=4,CQ=t=1,∴四边形BCQP面积=厘米2.(2)如图,过Q点作QH⊥AB于点H,则PH=BP-CQ=6-3t,HQ=2,根据勾股定理,得,解得.∴当秒或秒时,点P和点Q距离是3cm.(3)∵,当PD=DQ时,,解得或(舍去);当PD=PQ时,,解得或(舍去);当DQ=PQ时,,解得或.综上所述,当秒或秒或秒或秒时,以点P、Q、D为顶点的三角形是等腰三角形.23、(1);(2)∠.【分析】(1)按照题意补全图形即可,由已知可证△∽△,再由相似三角形的性质可知,从而可得答案;(2)过点作于点,由已知可证△∽△,从而有,再利用∠ACB的度数可求出,从而可得出答案.【详解】解:(1)正确补全图形;∵∴△∽△∴∵∴.(2)解:∠.证明:∵,∴.∵,∴.过点作于点,∴∵,∴.∵,∴.∵∠.∴△∽△.∴.【点睛】本题主要考查相似三角形的判定及性质,掌握旋转的性质及相似三角形的判定是解题的关键.24、(1)60,36;(2)见解析;(3)80;(4),见解析【分析】(1)根据该项所占的百分比=,圆心角=该项的百分比×360°,两图给了D的数据,代入即可算出总人数,然后再算A的圆心角即可;(2)根据条形图中数据和调查总人数,先计算喜欢“科学探究”的人数,再补全条形图即可;(3)根据喜欢某项人数=总人数×该项所占的百分比,计算即可;(4)画树状图得,共12种结果,满足条件有两种,根据概率公式求解即可;【详解】解:(1)由条形图、扇形图知:喜欢趣味数学的有24人,占调查总人数的40%,所以调查总人数:24÷40%=60,图中A部分的圆心角为:=36°;故答案为:60、36;(2)B课程的人数为60﹣(6+18+24)=12(人),补全图形如下:(3)估计最喜欢“科学探究”的学生人数为400×=80(人);(4)画树状图如图所示,共有12种等可能的结果数,其中抽到“天文地理”和“趣味数学”类题目的结果数为2,∴他们抽到“天文地理”和“趣味数学”类题目的概率是=;【点睛】本题主要考查了用样本估计总体,扇形统计图,条形统计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版初中物理中考复习教学导学案 (全套含答案)
- 从《榜样9》悟“四个带头”:对标先进砥砺前行
- 能源项目风险管理 课件 7-能源项目风险监控管理
- 小升初数学衔接教案讲义
- 高一化学达标训练:第三单元从微观结构看物质的多样性
- 吉林省吉林市普通中学2024-2025学年高三上学期二模试题 物理
- 2024高中地理第二章区域生态环境建设第1节荒漠化的防治-以我国西北地区为例2精练含解析新人教必修3
- 2024高中物理第四章电磁感应4法拉第电磁感应定律达标作业含解析新人教版选修3-2
- 2024高考地理一轮复习第三部分区域可持续发展-重在综合第四章区域经济发展第33讲区域工业化与城市化学案新人教版
- 2024高考化学一轮复习第三章金属及其化合物第二讲铝镁及其重要化合物规范演练含解析新人教版
- 新版个人简历Excel表格模板共2联
- (完整)中国象棋教案
- 2023年八年级物理实验报告单
- DL-T 5190.1-2022 电力建设施工技术规范 第1部分:土建结构工程(附条文说明)
- 《了凡四训》课件
- 胖东来商贸集团各项管理制度
- 麦琴每日读经计划表
- 连续梁施工安全培训:挂篮施工及安全控制
- 土壤与肥料学课件
- 供应商物料质量问题赔偿协议(中文)
- 公共厕所(预算书)
评论
0/150
提交评论