版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法判断2.如图所示,将Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,连接AD,若∠B=65°,则∠ADE=()A.20° B.25° C.30° D.35°3.如图,是的直径,弦于,连接、,下列结论中不一定正确的是()A. B. C. D.4.如图,的直径,是的弦,,垂足为,且,则的长为()A.10 B.12 C.16 D.185.如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能大致表示y与x之间关系的图象为()A. B.C. D.6.下列运算中,正确的是().A. B. C. D.7.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.8.如图,正五边形ABCDE内接于⊙O,则∠ABD的度数为()A.60° B.72° C.78° D.144°9.已知点(x1,y1),(x2,y2)是反比例函数y=图象上的两点,且0<x1<x2,则y1,y2的大小关系是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<010.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线过点F,交AB于点E,连接EF.若,S△BEF=4,则k的值为()A.6 B.8 C.12 D.1611.一个不透明的盒子中装有5个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大12.如图,点在以为直径的半圆上,点为圆心,,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.已知关于x的方程的一个根为2,则这个方程的另一个根是▲.14.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是________.15.一元二次方程的两根为,,则的值为____________.16.如图,双曲线与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为______.17.抛物线的顶点坐标为______.18.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.三、解答题(共78分)19.(8分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.20.(8分)如图,点是线段上的任意一点(点不与点重合),分别以为边在直线的同侧作等边三角形和等边三角形,与相交于点,与相交于点.(1)求证:;(2)求证:;(3)若的长为12cm,当点在线段上移动时,是否存在这样的一点,使线段的长度最长?若存在,请确定点的位置并求出的长;若不存在,请说明理由.21.(8分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用15m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m1.22.(10分)如图,一般捕鱼船在A处发出求救信号,位于A处正西方向的B处有一艘救援艇决定前去数援,但两船之间有大片暗礁,无法直线到达.救援艇决定马上调整方向,先向北偏东方以每小时30海里的速度航行,同时捕鱼船向正北低速航行.30分钟后,捕鱼船到达距离A处海里的D处,此时救援艇在C处测得D处在南偏东的方向上.求C、D两点的距离;捕鱼船继续低速向北航行,救援艇决定再次调整航向,沿CE方向前去救援,并且捕鱼船和救援艇同达时到E处,若两船航速不变,求的正弦值.参考数据:,,23.(10分)如图,BD、CE是的高.(1)求证:;(2)若BD=8,AD=6,DE=5,求BC的长.24.(10分)新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB在两棵同样高度的树苗CE和DF之间,树苗高2m,两棵树苗之间的距离CD为16m,在路灯的照射下,树苗CE的影长CG为1m,树苗DF的影长DH为3m,点G、C、B、D、H在一条直线上.求路灯AB的高度.25.(12分)某演出队要购买一批演出服,商店给出如下条件:如果一次性购买不超过10件,每件80元;如果一次性购买多于10件,每增加1件,每件服装降低2元,但每件服装不得低于50元,演出队一次性购买这种演出服花费1200元,请问此演出队购买了多少件这种演出服?26.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.
参考答案一、选择题(每题4分,共48分)1、A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.2、A【分析】根据旋转的性质可得AC=CD,∠CED=∠B,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∠CED=∠B=65°,∴△ACD是等腰直角三角形,∴∠CAD=45°,由三角形的外角性质得:.故选:A.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.3、C【分析】根据垂径定理及圆周角定理对各选项进行逐一分析即可.【详解】解:∵CD是⊙O的直径,弦AB⊥CD于E,
∴AE=BE,,故A、B正确;
∵CD是⊙O的直径,
∴∠DBC=90°,故D正确.
故选:C.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.4、C【分析】连接OC,根据圆的性质和已知条件即可求出OC=OB=,BE=,从而求出OE,然后根据垂径定理和勾股定理即可求CE和DE,从而求出CD.【详解】解:连接OC∵,∴OC=OB=,BE=∴OE=OB-BE=6∵是的弦,,∴DE=CE=∴CD=DE+CE=16故选:C.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.5、A【分析】根据图形先利用平行线的性质求出△BEF∽△BAC,再利用相似三角形的性质得出x的取值范围和函数解析式即可解答【详解】当0≤x≤4时,∵BO为△ABC的中线,EF∥AC,∴BP为△BEF的中线,△BEF∽△BAC,∴,即,解得y,同理可得,当4<x≤8时,.故选A.【点睛】此题考查动点问题的函数图象,解题关键在于利用三角形的相似6、C【解析】试题分析:3a和2b不是同类项,不能合并,A错误;和不是同类项,不能合并,B错误;,C正确;,D错误,故选C.考点:合并同类项.7、D【解析】如图旋转,想象下,可得到D.8、B【分析】如图(见解析),先根据正五边形的性质得圆心角的度数,再根据圆周角定理即可得.【详解】如图,连接OA、OE、OD由正五边形的性质得:由圆周角定理得:(一条弧所对圆周角等于其所对圆心角的一半)故选:B.【点睛】本题考查了正五边形的性质、圆周角定理,熟记性质和定理是解题关键.9、B【分析】根据反比例函数的系数为5>0,在每一个象限内,y随x的增大而减小的性质进行判断即可.【详解】∵5>0,∴图形位于一、三象限,在每一个象限内,y随x的增大而减小,又∵0<x1<x2,∴0<y2<y1,故选:B.【点睛】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.10、A【分析】由于,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=,然后即可求出E(3m,n-),依据mn=3m(n-)可求mn=1,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵,∴OA=3OC,BF=2OC∴若设F(m,n)则OA=3m,BF=2m∵S△BEF=4∴BE=则E(3m,n-)∵E在双曲线y=上∴mn=3m(n-)∴mn=1即k=1.故选A.【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.11、D【解析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【详解】∵摸到红球是随机事件,∴选项A不符合题意;∵摸到白球是随机事件,∴选项B不符合题意;
∵红球比白球多,∴摸到红球比摸到白球的可能性大,∴选项C不符合题意,D符合题意.故选:D.【点睛】此题主要考查了可能性的大小,以及随机事件的判断,要熟练掌握,解答此题的关键是要明确:在一定条件下,可能发生也可能不发生的事件,称为随机事件.12、B【分析】首先由圆的性质得出OC=OD,进而得出∠CDO=∠DCO,∠COD=70°,然后由圆周角定理得出∠CAD.【详解】由已知,得OC=OD∴∠CDO=∠DCO=55°∴∠COD=180°-∠CDO-∠DCO=180°-55°-55°=70°∵∠COD为弧CD所对的圆心角,∠CAD为弧CD所对的圆周角∴∠CAD=∠COD=35°故答案为B.【点睛】此题主要考查对圆周角定理的运用,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、-1.【解析】∵方程的一个根为2,设另一个为a,∴2a=-6,解得:a=-1.14、.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.故答案为.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.15、2【解析】根据一元二次方程根的意义可得+2=0,根据一元二次方程根与系数的关系可得=2,把相关数值代入所求的代数式即可得.【详解】由题意得:+2=0,=2,∴=-2,=4,∴=-2+4=2,故答案为2.【点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.16、1.【详解】解:∵⊙O在第一象限关于y=x对称,也关于y=x对称,P点坐标是(1,3),∴Q点的坐标是(3,1),∴S阴影=1×3+1×3-2×1×1=1.故答案为:117、【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.18、1.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【详解】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=1.故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.三、解答题(共78分)19、两人之中至少有一人直行的概率为.【解析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.概率=所求情况数与总情况数之比.20、(1)见解析;(2)见解析;(1)存在,请确定C点的位置见解析,MN=1.【分析】(1)根据题意证明△DCB≌△ACE即可得出结论;(2)由题中条件可得△ACE≌△DCB,进而得出△ACM≌△DCN,即CM=CN,△MCN是等边三角形,即可得出结论;(1)可先假设其存在,设AC=x,MN=y,进而由平行线分线段成比例即可得出结论.【详解】解:(1)∵△ACD与△BCE是等边三角形,∴AC=CD,CE=BC,
∴∠ACE=∠BCD,
在△ACE与△DCB中,,∴△ACE≌△DCB(SAS),∴DB=AE;(2)∵△ACE≌△DCB,∴∠CAE=∠BDC,
在△ACM与△DCN中,,∴△ACM≌△DCN,
∴CM=CN,
又∵∠MCN=180°-60°-60°=60°,
∴△MCN是等边三角形,
∴∠MNC=∠NCB=60°
即MN∥AB;(1)解:假设符合条件的点C存在,设AC=x,MN=y,
∵MN∥AB,∴,即,,当x=6时,ymax=1cm,即点C在点A右侧6cm处,且MN=1.【点睛】本题主要考查了全等三角形的判定及性质以及平行线分线段成比例的性质和二次函数问题,能够将所学知识联系起来,从而熟练求解.21、可以围成AB的长为15米,BC为10米的矩形【解析】解:设AB=xm,则BC=(50﹣1x)m.根据题意可得,x(50﹣1x)=300,解得:x1=10,x1=15,当x=10,BC=50﹣10﹣10=30>15,故x1=10(不合题意舍去).答:可以围成AB的长为15米,BC为10米的矩形.根据可以砌50m长的墙的材料,即总长度是50m,AB=xm,则BC=(50﹣1x)m,再根据矩形的面积公式列方程,解一元二次方程即可.22、(1)CD两点的距离是10海里;(2)0.08【分析】过点C、D分别作,,垂足分别为G,F,根据直角三角形的性质得出CG,再根据三角函数的定义即可得出CD的长;如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知,,,过点E作于点H,根据三角函数表示出EH,在中,根据正弦的定义求值即可;【详解】解:过点C、D分别作,,垂足分别为G,F,在中,,海里,,四边形ADFG是矩形,海里,海里,在中,,,,海里.答:CD两点的距离是10海里;如图,设渔船调整方向后t小时能与捕渔船相会合,由题意知,,,过点E作于点H,则,,,在中,.答:的正弦值是.【点睛】本题主要考查了解直角三角形的应用方向角问题,掌握解直角三角形的应用方向角问题是解题的关键.23、(1)见解析;(2)BC=.【分析】(1)、是的高,可得,进而可以证明;(2)在中,,,根据勾股定理可得,结合(1),对应边成比例,进而证明,对应边成比例即可求出的长.【详解】解:(1)证明:、是的高,,,;(2)在中,,,根据勾股定理,得,,,,,,,.【点睛】本题考查了相似三角形的判定与性质,解决本题的关键
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业信用管理经验分享会
- 通信线路维护员聘用合同
- 证券交易违规行为处罚办法
- 食品饮料行业设施管理准则
- 2025版山皮石石材电商平台合作框架协议3篇
- 2024年能源行业担保责任与节能减排合同3篇
- 药房环境保护措施
- 2024年装饰公司员工离职与补偿合同范本3篇
- 2025年度住宅小区窗帘清洗与保养服务合同3篇
- 网络直播反三违内容监管
- 小学信息科技《数据与编码-探索生活中的“编码”》教学设计
- 工程款代扣代付款协议书(2篇)
- 2024年湖北省高考化学试卷真题(含答案解析)
- 物业充电桩合作加盟协议书范文
- 2023春国开会计实务专题形考任务4题库1及答案
- 现有民办学校选择登记为营利性民办学校办理流程
- 机械工安全操作规程有哪些(11篇)
- 期末测试卷(一)(试题)2023-2024学年二年级上册数学苏教版
- 2024中国华电集团限公司校招+社招高频难、易错点500题模拟试题附带答案详解
- 国家开放大学电大《会计信息系统》期末终考题库及标准参考答案
- 【飞科电器公司基于杜邦分析法的财务分析案例(7700字论文)】
评论
0/150
提交评论