




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个等腰三角形的两边长分别为3、7,则它的周长为()A.17 B.13或17 C.13 D.102.下式等式从左到右的变形,属于因式分解的是()A.; B.;C.; D..3.下列说法正确的是()A.若=x,则x=0或1 B.算术平方根是它本身的数只有0C.2<<3 D.数轴上不存在表示的点4.已知,为实数且满足,,设,.①若时,;②若时,;③若时,;④若,则.则上述四个结论正确的有()A.1 B.2 C.3 D.45.已知A、B两个港口之间的距离为100千米,水流的速度为b千米/时,一艘轮船在静水中的速度为a千米/时,则轮船往返两个港口之间一次需要的时间是()A.+ B.C.+ D.﹣6.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”7.如图,已知点的坐标为,点的坐标为,点在直线上运动,当最小时,点的坐标为()A. B. C. D.8.如图,,和,和为对应边,若,,则等于()A. B. C. D.9.下列运算中错误的是()A. B. C. D.10.已知:关于x的分式方程无解,则m的值为()A.-4或6 B.-4或1 C.6或1 D.-4或6或1二、填空题(每小题3分,共24分)11.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.12.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占60%,面试成绩占40%,应聘者张华的笔试成绩和面试成绩分别为95分和90分,她的最终得分是_____分.13.在△ABC中,AB=AD=CD,且∠C=40°,则∠BAD的度数为__________.14.诺如病毒的直径大约0.0000005米,将0.0000005用科学记数法可表示为________15.生物学家发现一种病毒,其长度约为0.00000032米,数据0.00000032用科学记数法表示为________.16.质检员小李从一批鸡腿中抽查了只鸡腿,它们的质量如下(单位:):,,,,,,,这组数据的极差是_____.17.已知,则的值等于___________.18.点P关于轴的对称点坐标为________.三、解答题(共66分)19.(10分)如图,点、、、在同一条直线上,,,.求证:.20.(6分)如图,在中,点是上一点,分别过点、两点作于点,于点,点是边上一点,连接,且.求证:.21.(6分)如图,在中,.求的度数.22.(8分)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.23.(8分)阅读下列材料,然后回答问题:阅读:在进行二次根式的化简与运算时,可以将进一步化简:方法一:方法二:(探究)选择恰当的方法计算下列各式:(1);(2).(猜想)=.24.(8分)为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?25.(10分)四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.求证:(1)△CBE≌△CDF;(2)AB+DF=AF.26.(10分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.
参考答案一、选择题(每小题3分,共30分)1、A【分析】题目中没有明确底和腰,故要先进行分类讨论,再结合三角形三边关系定理分析即可解答.【详解】∵①当3为腰、7为底时,三角形的三边分别为3、3、7,此时不满足三角形三边关系定理舍去;②当3为底、7为腰时,三角形的三边分别为3、7、7,此时满足三角形三边关系定理.∴等腰三角形的周长是:故选:A【点睛】本题考查了等腰三角形的性质以及三角形三边关系定理.解题的关键是熟练掌握三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.2、C【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A.是整式的乘法,故A错误;B.没把一个多项式转化成几个整式积的形式,故B错误;C.把一个多项式转化成几个整式积的形式,故C正确;D.没把一个多项式转化成几个整式积的形式,故D错误;故选C.【点睛】此题考查因式分解的意义,解题关键在于掌握运算法则3、C【分析】根据算术平方根,立方根,实数和数轴的关系逐个判断即可.【详解】A、若=x,则x=0或±1,故本选项错误;B、算术平方根是它本身的数有0和1,故本选项错误;C、2<<3,故本选项正确;D、数轴上的点可以表示无理数,有理数,故本选项错误;故选:C.【点睛】本题考查了算术平方根,立方根,实数和数轴的关系的应用,主要考查学生的辨析能力和理解能力.4、B【分析】先求出对于①当时,可得,所以①正确;对于②当时,不能确定的正负,所以②错误;对于③当时,不能确定的正负,所以③错误;对于④当时,,④正确.【详解】,①当时,,所以,①正确;②当时,,如果,则此时,,②错误;③当时,,如果,则此时,,③错误;④当时,,④正确.故选B.【点睛】本题关键在于熟练掌握分式的运算,并会判断代数式的正负.5、C【分析】直接根据题意得出顺水速度和逆水速度,进而可得出答案.【详解】由题意得:顺水速度为千米/时,逆水速度为千米/时则往返一次所需时间为故选:C.【点睛】本题考查了分式的实际应用,依据题意,正确得出顺水速度和逆水速度是解题关键.6、B【分析】将原命题的条件与结论进行交换,得到原命题的逆命题.【详解】解:因为一个命题的逆命题是将原命题的条件与结论进行交换,因此逆命题为“若一个数的平方是正数,则它是负数”.故选:B.【点睛】本题考查四种命题的互相转化,解题时要正确掌握转化方法.7、A【分析】连接AB,与直线的交点就是点C,此时最小,先求出直线AB的解析式,然后求出点C的坐标即可【详解】解:根据题意,如图,连接AB,与直线的交点就是点C,则此时最小,设点A、B所在的直线为,则,解得:,∴,∴,解得:,∴点C的坐标为:;故选:A.【点睛】本题考查了一次函数的图形和性质,以及最短路径问题,解题的关键是正确确定点C的位置,求出直线AB的解析式,进而求出点C.8、A【分析】根据全等三角形的性质求出∠D,再用三角形的内角和定理即可求解.【详解】∵∴∠D=∠A=123°又∴=180°-∠D-∠F=180°-123°-39°=18°故选:A【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应角相等及三角形的内角和定理是关键.9、A【分析】根据合并同类二次根式的法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【详解】A.与不是同类二次根式,不能合并,故此项错误,符合要求;B.,故此项正确,不符合要求;C.,故此项正确,不符合要求;D.,故此项正确,不符合要求;故选A.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10、D【分析】根据分式方程无解,可以得出关于m的方程,解方程可得到答案.【详解】解:两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2)当m=1时,2(x+2)+mx=3(x-2)无解,分式方程无解;当x=2时,2(x+2)+mx=3(x-2)8+2m=0m=-4当x=-2时,2(x+2)+mx=3(x-2)0-2m=-12m=6故选D.【点睛】此题主要考查了分式方程无解的判断,注意m=1的情况.二、填空题(每小题3分,共24分)11、3.1【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.1(精确到0.01).
故答案为3.1.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12、1【分析】利用加权平均数的计算公式,进行计算即可.【详解】95×60%+90×40%=1(分)故答案为:1.【点睛】本题主要考查加权平均数的实际应用,掌握加权平均数的计算公式,是解题的关键.13、20°【分析】根据可得出,再利用三角形外角的性质得出,然后利用得出,最后利用三角形内角和即可求出答案.【详解】故答案为:20°.【点睛】本题主要考查等腰三角形的性质及三角形外角的性质,内角和定理,掌握等腰三角形的性质是解题的关键.14、5×10-7【解析】试题解析:0.0000005=5×10-715、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000032=3.2×;故答案为.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16、【分析】极差就是这组数据中的最大值与最小值的差.【详解】,,,,,,,这组数据的极差是:79-72=7故答案为:7【点睛】本题考查了极差的定义,掌握极差的定义是解题的关键.17、【分析】先进行配方计算出m,n的值,即可求出的值.【详解】,则,故答案为:.【点睛】本题是对完全平方非负性的考查,熟练掌握配方知识和完全平方非负性是解决本题的关键.18、【分析】根据点的坐标关于坐标轴对称的方法“关于谁对称,谁就不变,另一个互为相反数”可直接求解.【详解】解:由点P关于轴的对称点坐标为;故答案为.【点睛】本题主要考查点的坐标关于坐标轴对称,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.三、解答题(共66分)19、见解析;【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【详解】证明:∵,∴.∵∴∴在和中,∴,∴.【点睛】本题考查了平行线的性质和全等三角形的判定和性质的应用,根据已知条件和平行线的性质得出三角形全等的条件是解决此题的关键.20、见解析【分析】先根据题意判断,得到,之后因为,即可得到,利用内错角相等,两直线平行,即可解答.【详解】解:证明:∵在中,点是上一点,于点,于点,∴,∴,∵,∴,∴.【点睛】本题考查的主要是平行线的性质和判定,在本题中,用到的相关知识有:垂直于同一条直线的两条直线互相平行;两直线平行,同位角相等;内错角相等,两直线平行.21、37.5°【分析】利用等边对等角的性质结合三角形内角和定理可求出,再根据外角的性质可得的度数.【详解】证明:∵,,∴.又∵,∴.而,∴.【点睛】本题主要考查了等腰三角形的性质,还涉及了三角形内角和定理及三角形外角的性质,灵活利用等腰三角形等边对等角的性质是解题的关键.22、(1)证明见解析;(2)证明见解析;(3)△ACN仍为等腰直角三角形,证明见解析.【分析】(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)同(2)中的解题可得AB=DA=NE,∠ABC=∠NEC=180°﹣∠CBN,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.【详解】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∵,∴△ADM≌△NEM(AAS).∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∵,∴△ABC≌△NEC(SAS).∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明如下:如图3,此时A、B、N三点在同一条直线上.∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∵,∴△ABC≌△NEC(SAS).∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.【点睛】本题考查全等三角形的旋转问题,熟练掌握旋转的性质是解题的关键.23、(1)(2)(3).【分析】(1)利用分母有理化计算;(2)先分别分母有理化,然后合并即可;(3)猜想部分与(2)计算一样,利用规律即可求解.【详解】(1)(2)==(3)猜想:原式====.故答案为.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脓毒血症个案护理模板
- 英语通识阅读教程 文学篇 课件 Unit 4 Imagination and Future
- 血液透析的中心静脉的护理
- 福建省福州市台江区2025年小升初全真模拟数学检测卷含解析
- 江苏省南京市鼓楼区2025年初三下学期考前最后一次模拟化学试题含解析
- 广东文理职业学院《计算方法概论》2023-2024学年第一学期期末试卷
- 5G知识介绍课件模板
- 昆明城市学院《工程力学A(2)》2023-2024学年第一学期期末试卷
- 2025年山东省邹平双语学校二区高三英语试题第三次质量检测试题试卷含解析
- 良好班风建设课件
- 湖南省常德市石门一中2025届高三第二次模拟考试(B卷)数学试题试卷含解析
- 2025年湖南省各市州湘能农电服务有限公司招聘笔试参考题库附带答案详解
- 浙江省杭州市萧山区萧山城区八校期中考试联考2023-2024学年八年级下学期4月期中英语试题(含答案)
- 手术工作流程课件
- 危险性较大的分部分项工程专项施工方案严重缺陷清单(试行)
- 2025年辽宁省建筑安全员《B证》考试题库
- 2023-2024学年华东师大版八年级数学上册期末复习综合练习题
- 慢性肾病5期护理查房
- 常务副总经理职责
- 2024年云南省中考物理真题含解析
- 后勤岗位招聘面试题及回答建议
评论
0/150
提交评论