版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.一个多边形的内角和是720°,这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD;②CN=CM;③MN∥AB;④∠CDB=∠NBE.其中正确结论的个数是()A.4 B.3 C.2 D.13.如果多项式的一个因式是,那么另一个因式是()A. B. C. D.4.如图:是的外角,平分,若,,则等于()A. B. C. D.5.把多项式分解因式,结果正确的是()A. B.C. D.6.一个长方形的面积是,且长为,则这个长方形的宽为()A. B. C. D.7.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1) D.x2+y2=(x﹣y)2+2x8.如果,那么代数式的值是().A.2 B. C. D.9.如图所示,有一条线段是()的中线,该线段是().A.线段GH B.线段AD C.线段AE D.线段AF10.若等腰三角形的周长为60cm,底边长为xcm,一腰长为ycm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60) B.y=60-2x(0<x<30)C.y=(60-x)(0<x<60) D.y=(60-x)(0<x<30)11.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.2+ B. C. D.312.据统计,2019年河北全省参加高考报名的学生共有55.96万人.将55.96用四舍五入法精确到十分位是()A.55.9 B.56.0 C.55.96 D.56二、填空题(每题4分,共24分)13.若数m使关于x的不等式组有且仅有四个整数解,且使关于x的分式方程有非负数解,则所有满足条件的整数m的值之和是________.14.如图,将长方形ABCD的边AD沿折痕AE折叠,使点D落在BC上的F处,若AB=5,AD=13,则EF=_____.15.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成如图所示的条形图,由此可估计该校2000名学生有______名学生是骑车上学的.16.计算:=_____.17.如图,点在等边的边上,,射线,垂足为点,点是射线上一动点,点是线段上一动点,当的值最小时,,则的长为___________________.18.如图,平分,平分,与交于,若,,则的度数为_________.(用表示)三、解答题(共78分)19.(8分)如图,已知和点、求作一点,使点到、的距离相等且.请作出点.(用直尺、圆规作图,不写作法,保留作图痕迹)20.(8分)如图,在△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)(2)求S△ADC:S△ADB的值.21.(8分)解方程:+1.22.(10分)某开发公司生产的960件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工的数量的,公司需付甲工厂加工费用为每天80元,乙工厂加工费用为每天120元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天15元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.23.(10分)已知,如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为______时,△PBQ是等边三角形?(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.24.(10分)计算﹣2()25.(12分)在如图所示的平面直角坐标系中,描出点A(3,2)和点B(-1,4).(1)求点A(3,2)关于x轴的对称点C的坐标;(2)计算线段BC的长度.26.如图,有一个池塘,要到池塘两侧AB的距离,可先在平地上取一个点C,从C不经过池塘可以到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A,B的距离,为什么?
参考答案一、选择题(每题4分,共48分)1、B【解析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.解:设这个多边形的边数为n,由题意,得(n﹣2)180°=720°,解得:n=6,故这个多边形是六边形.故选B.2、A【分析】根据题目中的已知信息,判定出△ACE≌△DCB,即可证明①正确;判定△ACM≌△DCN,即可证明②正确;证明∠NMC=∠ACD,即可证明③正确;分别判断在△DCN和△BNE各个角度之间之间的关系,即可证明④正确.【详解】∵△ACD和△BCE是等边三角形∴∠ACD=∠BCE=60°,AC=DC,EC=BC∴∠ACD+∠DCE=∠DCE+∠ECB即∠ACE=∠DCB∴△ACE≌△DCB(SAS)∴AE=BD,故①正确;∴∠EAC=∠NDC∵∠ACD=∠BCE=60°∴∠DCE=60°∴∠ACD=∠MCN=60°∵AC=DC∴△ACM≌△DCN(ASA)∴CM=CN,故②正确;又∠MCN=180°-∠MCA-∠NCB=180°-60°-60°=60°∴△CMN是等边三角形∴∠NMC=∠ACD=60°∴MN∥AB,故③正确;在△DCN和△BNE,∠DNC+∠DCN+∠CDB=180°∠ENB+∠CEB+∠NBE=180°∵∠DNC=∠ENB,∠DCN=∠CEB∴∠CDB=∠NBE,故④正确.故选:A.【点睛】本题主要考查了根据已知条件判定三角形全等以及三角形的内角和,其中灵活运用等边三角形的性质是解题的关键,属于中等题.3、A【分析】多项式先提取公因式,提取公因式后剩下的因式即为所求.【详解】解:,故另一个因式为,故选:A.【点睛】此题考查了因式分解提取因式法,找出多项式的公因式是解本题的关键.也是解本题的难点,要注意符号.4、D【分析】根据三角形外角性质求出,根据角平分线定义求出即可.【详解】∵,
∴,
∵平分,
∴,
故选:D.【点睛】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.5、C【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(-4)=2(x+2)(x-2).考点:因式分解.6、A【分析】根据长方形的宽=长方形的面积÷长方形的长即可列出算式,再根据多项式除以单项式的法则计算即可.【详解】解:这个长方形的宽=.故选:A.【点睛】本题考查了多项式除以单项式的实际应用,属于基础题型,正确理解题意、熟练掌握运算法则是解题的关键.7、C【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A、2a2-2a+1=2a(a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x-y)=x2-y2,这是整式的乘法,故此选项不符合题意;C、x2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D、x2+y2=(x-y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C.【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.8、A【解析】(a-)·=·=·=a+b=2.故选A.9、B【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.10、D【解析】∵2y+x=60,∴y=(60-x)(0<x<30).故选D.11、A【分析】如图,过点D作DF⊥AC于F,由角平分线的性质可得DF=DE=1,在Rt△BED中,根据30度角所对直角边等于斜边一半可得BD长,在Rt△CDF中,由∠C=45°,可知△CDF为等腰直角三角形,利用勾股定理可求得CD的长,继而由BC=BD+CD即可求得答案.【详解】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴CD==,∴BC=BD+CD=,故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12、B【分析】把55.96精确到十分位就是对这个数的十分位后面的数进行四舍五入即可.【详解】将55.96用四舍五入法精确到十分位的近似数是56.2.故选:B.【点睛】本题考查了近似数,精确到哪一位,即对下一位的数字进行四舍五入.这里对百分位的6入了后,十分位的是9,满了22后要进2.二、填空题(每题4分,共24分)13、-1【分析】分别求出使不等式组有四个整数解的m的范围和使方程有非负数解的m的范围,综合这两个范围求整数m的值.【详解】解不等式组,可得,∵不等式组有且仅有四个整数解,∴﹣1≤<0,∴﹣4<m≤3,解分式方程,可得x=,又∵分式方程有非负数解,∴x≥0,且x≠2,即≥0,≠2,解得且m≠-2,∴﹣4<m≤2,且m≠-2∴满足条件的整数m的值为﹣3,-1,0,1,2∴所有满足条件的整数m的值之和是:故答案为:﹣1.【点睛】本题考查了求不等式组中的字母系数的范围及求分式方程的整数解的方法,求分式方程中的字母系数的范围时要注意字母系数既要满足题中的条件,又要不使分母等于0.14、【分析】由翻折的性质得到AF=AD=13,在Rt△ABF中利用勾股定理求出BF的长,进而求出CF的长,再根据勾股定理可求EC的长.【详解】解:∵四边形ABCD是长方形,∴∠B=90°,∵△AEF是由△ADE翻折,∴AD=AF=13,DE=EF,在Rt△ABF中,AF=13,AB=5,∴BF===12,∴CF=BC﹣BF=13﹣12=1.∵EF2=EC2+CF2,∴EF2=(5﹣EF)2+1,∴EF=,故答案为:.【点睛】本题考查勾股定理的综合应用、图形的翻折,解题的关键是熟练掌握勾股定理和翻折的性质.15、1【分析】根据条形统计图求出骑车上学的学生所占的百分比,再乘以总人数即可解答.【详解】解:根据题意得:2000×=1(名),答:该校2000名学生有1名学生是骑车上学的.故答案为:1.【点睛】本题考查了用样本估计总体和条形统计图,解题的关键是根据条形统计图求出骑车上学的学生所占的比例.16、【解析】根据算术平方根的定义求解可得.【详解】解:=故答案为:【点睛】本题考查算术平方根,解题关键是熟练掌握算术平方根的定义.17、1【分析】作出点M关于CD的对称点M1,然后过点M1作M1N⊥AB于N,交CD于点P,连接MP,根据对称性可得MP=M1P,MC=M1C,然后根据垂线段最短即可证出此时最小,然后根据等边三角形的性质可得AC=BC,∠B=60°,利用30°所对的直角边是斜边的一半即可求出BM1,然后求出BC即可求出AC.【详解】解:作出点M关于CD的对称点M1,然后过点M1作M1N⊥AB于N,交CD于点P,连接MP,如下图所示根据对称性质可知:MP=M1P,MC=M1C此时=M1P+NP=M1N,根据垂线段最短可得此时最小,且最小值为M1N的长∵△ABC为等边三角形∴AC=BC,∠B=60°∴∠M1=90°-∠B=30°∵,当的值最小时,,∴在Rt△BM1N中,BM1=2BN=18∴MM1=BM1-BM=10∴MC=M1C=MM1=5∴BC=BM+MC=1故答案为:1.【点睛】此题考查的是垂线段最短的应用、等边三角形的性质和直角三角形的性质,掌握垂线段最短、等边三角形的性质和30°所对的直角边是斜边的一半是解决此题的关键.18、【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC+∠ACB的度数,从而不难求得∠A的度数.【详解】连接BC.∵∠BDC=m°,∴∠DBC+∠DCB=180°-m°,∵∠BGC=n°,∴∠GBC+∠GCB=180°-n°,∴∠GBD+∠GCD=(180°-n°)-(180°-m°)=m°-n°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠ABD+∠ACD=2∠GBD+2∠GCD=2m°-2n°,∴∠ABC+∠ACB=2m°-2n°+180°-m°=180°+m°-2n°,∴∠A=180°-(∠ABC+∠ACB)=180°-(180°+m°-2n°)=2n°-m°,故答案为2n°-m°.【点睛】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.三、解答题(共78分)19、答案见解析【分析】作出∠ECD的平分线,线段AB的垂直平分线,两线的交点就是P点.【详解】解:如图所示:点P为所求.【点睛】此题主要考查了复杂作图,解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)线段垂直平分线上的点到线段两端点的距离相等.20、(1)见解析;(2).【分析】(1)以A为圆心,以任意长度为半径作弧,分别交AC、AB于P、Q,分别以P、Q为圆心,以大于PQ长度为半径作弧,交于点M,连接AM并延长,交BC于D,从而作出AD;(2)过点D作DE⊥AB于E,根据勾股定理求出AB,然后根据角平分线的性质可得:DE=DC,最后根据三角形的面积公式求S△ADC:S△ADB的比值即可.【详解】解:(1)以A为圆心,以任意长度为半径作弧,分别交AC、AB于P、Q,分别以P、Q为圆心,以大于PQ长度为半径作弧,交于点M,连接AM并延长,交BC于D,如图所示:AD即为所求;(2)过点D作DE⊥AB于E∵AC=6,BC=8根据勾股定理可得:AB=∵AD平分∠CAB,DC⊥AC∴DE=DC∴S△ADC:S△ADB=(AC·DC):(AB·DE)=AC:AB=6:10=【点睛】此题考查的是画一个角的角平分线、勾股定理和角平分线的性质,掌握用尺规作图作一个角的角平分线、用勾股定理解直角三角形和角平分线上的点到角两边的距离相等是解决此题的关键.21、x=1.2【分析】根据分式方程的解法去分母、移项、合并同类项、化系数为1,检验即可解答.【详解】解:去分母得:3=2x+3x﹣3,移项合并得:5x=6,解得:x=1.2经检验x=1.2是分式方程的解.【点睛】本题考查了分式方程的解法,解出后要检验是否是增根.22、(1)甲工厂每天加工16件产品,乙工厂每天加工24件产品.(2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.【解析】(1)设甲工厂每天加工x件新品,乙工厂每天加工1.5x件新品,根据题意找出等量关系:甲厂单独加工这批产品所需天数﹣乙工厂单独加工完这批产品所需天数=20,由等量关系列出方程求解.(2)分别计算出甲单独加工完成、乙单独加工完成、甲、乙合作完成需要的时间和费用,比较大小,选择既省时又省钱的加工方案即可.【详解】(1)设甲工厂每天加工x件新品,乙工厂每天加工1.5x件新品,则:解得:x=16经检验,x=16是原分式方程的解∴甲工厂每天加工16件产品,乙工厂每天加工24件产品(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60天需要的总费用为:60×(80+15)=5700元方案二:乙工厂单独完成此项任务,则需要的时间为:960÷24=40天需要的总费用为:40×(120+15)=5400元方案三:甲、乙两工厂合作完成此项任务,设共需要a天完成任务,则16a+24a=960∴a=24∴需要的总费用为:24×(80+120+15)=5160元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.23、(1)12;(2)当t为9或时,△PBQ是直角三角形,理由见解析.【分析】(1)根据等边三角形的性质解答即可;(2)分两种情况利用直角三角形的性质解答即可.【详解】(1)要使,△PBQ是等边三角形,即可得:PB=BQ,∵在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024挖掘机操作员智能驾驶技术培训合同3篇
- 2024砂石料采购、配送及售后保障服务合同范本3篇
- 2024年高校招生宣传合作协议3篇
- 善行义举榜实施方案
- 2025湖北省建筑安全员考试题库附答案
- 2025年-吉林省安全员-A证考试题库及答案
- 2024年适用夫妻不忠离婚条款详细合同样本一
- 2025年学校与家长共同培养青少年综合素质协议参考3篇
- 二零二五年度家具行业培训合同范本:家具行业培训合作协议3篇
- 图书馆安检光机安全操作规程
- 物业投诉处理培训课件
- 《春秋》导读学习通章节答案期末考试题库2023年
- 1.1、供应商管理控制流程与风险控制流程图
- 初二年级劳动课教案6篇
- 箱变迁移工程施工方案
- 北师大版九年级数学下册《圆的对称性》评课稿
- 《遥感原理与应用》期末考试试卷附答案
- 物流无人机垂直起降场选址与建设规范(征求意见稿)
- 工程分包管理制度
- 2023年湖南成人学位英语考试真题
- GB/T 9452-2023热处理炉有效加热区测定方法
评论
0/150
提交评论