实用主义-公共通识类高等数学_第1页
实用主义-公共通识类高等数学_第2页
实用主义-公共通识类高等数学_第3页
实用主义-公共通识类高等数学_第4页
实用主义-公共通识类高等数学_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

y3x2y1xy1yx35xx2x2y 3 222121y(x2)(x3 x x y1 11x11x3 )(x2 y(1)(x2)2x3

1616116y(x3x)(x5)5x 5x5 111 y(x23x2)(x6)

1x668已知物体的运动规律为st3(m)求这物体在t2秒(s)时的速度解v(s)3t2v|t212(米/秒)9f(x)为偶函数f(0)存在f(0)limf(x)f(0)limf(x)f(0)limf(x)f(0)f(0) x x x10ysinx在具有下列横坐标的各点处切线的斜率解因为ycosx所以斜率分别为k1cos21k2cos1

x23 11ycosx上点

3解ysinx sin3x 故在点(,1处y13(x3 法线方y12(x) 12求曲线yex在点(01)处的切线方程解yexy|x01故在(01)处的切线方程y11(x0)13在抛物线yx2上取横坐标为x11及x23的两点作过这两点的割线问该抛物线上哪解y2x割线斜率为ky(3)y(1)914 2x414讨论下列函数在x0处的连续性与可导性y

x

x0 (1)

xy(0)0limylim|sinx|lim(sinx)0limylim|sinx|limsinx0

x x y(0)limy(x)y(0)lim|sinx||sin0| x x x x y(0)limy(x)y(0)lim|sinx| x x 而y(0)y(0)所以函数在x0处不可导解因为limy(x)

x2sin1 limy(x)y(0) limxsin 15设函数f(x) x1为了使函数f(x)在x1处连续且可导ab应取什么值 x

f(x)limx2

f(x)lim(axb)abf(1)limx212f(1)limaxb1lima(x1)ab1lima(x1)a x10x x x x10x16已知f(x) x0求f(0)及f(0)又f(0)是否存在 x f(0)limf(x)f(0)limx01f(0)limf(x)f(0)limx200 17已知 求f(x) xx<0时f(x)sinxf(x)cosxx>0时f(x)xff(0)limf(x)f(0)limsinx01 f(0)limf(x)f(0limx01所以f(0)1 x0xf(x)cosx x0 xxya2ya2kya2 yya2(xx)x x02

y令y0并注意x0y0ax00x02x0为切线在x轴上的距令x0并注意xya2y

y2y为切线在y轴上的距x0 x0S1|2x0||2y0|2|x0y0|2a22习题1推导余切函数及余割函数的导数公式(cotx)csc2x (cscx)cscxcotx解(cotx)(cosx)sinxsinxcosxcosxsin2xcos2x csc2x sin2 sin2 sin2(cscx)(1)cosxcscxcotx sin22求下列函数的导数y47212 y5x32x3exy2tanxsecysinxcosxyx2lnxy3excosxylnxxyexln3yx2lnxcosxs1sint(1)y(47212)(4x57x42x1 20x628x52x220282 y(5x32x3ex)15x22xy(sinxcosx)(sinx)cosxsinx(cosx)cosxcosxsinx(sinx)cos2xy(x2lnx)2xlnxx21x(2lnx1)xy(3excosx)3excosx3ex(sinx)3ex(cosxsin1xlny(lnx) 1lnx y(exln3)exx2ex2xex(x2) y(x2lnxcosx)2xlnxcosxx21cosxx2lnx(sinx2xlnxcosxxcosxx2lnxsinxs(1sint)cost(1cost)(1sint)(sint)1sintcost 3求下列函数在给定点处的导数ysinxcosx

x

xsin1cos,求 df(x3x2f(0)f(2)5 (1)ycosxsin cossin3131x 2 cossin22 2x dsincos1sin1sincos 1sincos1222(1)d

2 f(x) 2xf(0)3f(2)17(5 2该物体的速度解(1)v(t)s(t)v0gt(2)令v(t)0即v0gt0得tv0这就是物体达到最高点的时刻g5求曲线y2sinxx2上横坐标为x0的点处的切线方程和法线方程y2cosx2xy|x02又当x0时y0所以所求的切线方程为y1x26求下列函数的导数ye3x2ysin2xa2a2y(arcsinylncosx(1)ye3x2(3x2)e3x2(6x)6xe3x2y1(1x2)12x2x1 1 1 1 a2 (a2 2(a2 (a2 2(a2x2)2a2 (ex 1(ex 11y2arcsinx(arcsinx)2arcsin1y1(cosx) cos cos7求下列函数的导数y ye2cos3xyarccos1xy1lnxysin2xxxy xyln(xa2x2)yln(secxtanyln(cscxcotx解(1)y (12x)x 11 1

1 3 (1x2)

2(1x2)

2(1x2)2(

(1x2)1 y

2)cos3xe

2 )cos3x2

2(sin1 12e2cos3x3e2sin3x2e2(cos3x6sin3x)1x 1x

(1)

| xx2x2x2x2 x (1ln ycos2x2xsin2x12xcos2xsin2x12121(y1 (x) 1(1(

2xa22xa2xa22a22a2x

a2x2 (a2xa22axa22a2a2 (secxtanx)secxtanxsec2xsecxsecxtan secxtan (cscxcotx)cscxcotxcsc2xcscx 8求下列函数的导数yarcsinx22ylntanx21ln21ln2yearctanxysinnxcosnxyarctanx1xyarcsinxy1x1x1xy

11x1解(1)y2arcsinxarcsinx2arcsinx (1(21(2 1 2 1(2

4 1(tanx 1sec2x(x 1sec2x1cscxtan2

tan2

2 tan 212121ln2y1ln2x (1ln2

2lnx(ln21ln2x1ln211x1ln211ln2 yearctanx

x)earctanx (

earctanx 1earctanx1(x)22 2x(1ynsinn1x(sinx)cosnxsinnx(sinnsinn1xcosxcosnxsinnx(sinnsinn1x(cosxcosnxsinxsinnx)nsinn1xcos(n1)x (x (x1)(x1)

1(xx

x 1(xx

(x 1 arccosx111 arccosx111arcsin(arccos 21x2(arccos

1

(arccos [ln(ln 1(ln 11 ln(ln ln(lnx)lnx xlnxln(ln 11121 21)(1x1x)(1x1(1x121 21)1x21x211(1x)2x(1

(1x) (1x)(1x) 1 111f2(x)111112f2(x)g9.设函数f(x)和g(x)可导且f2(x)g2(x)0试求函数y 解y 111f2(x)111112f2(x)g2f2(x)gf2(x)gf(x)f(xf2(x)g(1)(1)yf(x2)(x2)f(x2)2x2xf(2)yf(sin2x)(sin2x)ff(sin2x)2sinxcosxf(cos2x)2cosx(sinsin2x[f(sin2x)f11求下列函数的导数ych(shxyshxechyth(lnyarctan(thylnchx 2ch2ych2x1x(1)ysh(shx)(shx)sh(shx)chxychxechxshxechxshxechx(chxsh2x) (ln ch2(ln xch2(lny3sh2xchx2chxshxshxchx(3shx2) (1x2) ch2(1 ch2(1 (x21) 1(x2 x42x2e4xy (e2x)2e2e4x(e2x)2 (th 1 1th2xch2 sh2ch2

ch2 ch2xsh2x12sh2y1(ch (ch2x)shx 2chch 2ch4 chx2ch4shxshxshxch2xshxshx(ch2x1)sh3xth3xchx ch3x

x

xch3xx1y2chx1chx1

1

1 x x x x x sh2x1x (x (x x12求下列函数的导数yarctanx22ylnxyetetetylncos1xyy

sin2xxx4yxarcsinx42yarcsin2t(1)y2sinxcosy2arctanx 11 arctanx21x241xnln

x2 y 1nlnx y(etet)(etet)(etet)(etet) (etet (e2tysec1(cos1)sec1(sin1)(1)1tan1x x

x

x

1(1)

sin222x4xx22x4xxx x2

x

1) yarcsinx 1 (2x)arcsinx2x2x4 1x22

11(2t (2t 2(111(2t1(2t1(2t 2(1t2)2(1t2)

|1t2习题1求函数的二阶导数y2x2lnxye2x1yxcosxyetsinta2a2ytanxy x3y1x2)arctanxyexxyxex2yln(x1x2)解(1)y4x1x

y41ye2x122e2x1y2e2x1yxcosxycosxxsinysinxsinxxcosx2sinxxcosxyet(cosxsinx)et(sinxcosx)2etcosta2a2 (a2a2a22a2x2 y a2x2 a2y1(1x2)2x1 1

(a2x2)a2 ysec2y2secx(secx)2secxsecxtanx2sec2xtanx(x3

(x3y6x(x31)23x22(x31)3x6x(2x31)(x3 (x3y2xarctanx(1x2) 1y2arctanx2x1yexxex1ex(x1) y[ex(x1)ex]x2ex(x1)2xex(x22x2) yex2xex2(2x)ex2(12x2)121yex22x(12x2)ex24x2xex21211 1x

1x2 x1

) y1(1x2)1 1(1x)211(1x)212设f(x)(x10)6f解f(x)6(x10)5f(x)30(x10)4ff3f(x)存在,yd2yyf(x2)yln[f(x)](1)yf(x2)(x2)2xfy2f(x2)2x2xf(x2)2f(x2)4x2f(2)y f(x)fyf(x)f(x)f(x)f(x)f(x)f(x)[f(x)]2[f4dx1导出 d2xy d3x3(y)2yy

[f(1d2xddxd1d1dxy1y dy dy(y)2 (2)d3xdydydxy(y)3y3(y)2y13(y)2yy d2s2s0解dsAcostd2sA2sintd2s就是物体运动的加速度d2s2sA2sint2Asint0y2y0解yC1exC2ex(C1exC2ex)(C1exC2ex)07验证函数yexsinx满足关系式y2y2y0解yexsinxexcosxex(sinxcosyex(sinxcosx)ex(cosxsinx)2excosxy2y2y2excosx2ex(sinxcosx)2exsin2excosx2exsinx2excosx2exsinx0yxna1xn1a2xn2an1xan(a1a2an都是常数ysin2xyxlnxyxex(1)ynxn1(n1)a1xn2(n2)a2xn3an1yn(n1)xn2(n1)(n2)a1xn3(n2)(n3)a2xn4an2y(n)n(n1)(n2)21x0n!y2sinxcosxsin2xy2cos2x2sin(2x)

cos(2x

)

sin(2x2)2 2y(4)23cos(2x2)23sin(2x3) y(n)2n1sin[2x(n1)]2ylnx1y1x1y(n)(1)(2)(3)(n2)xn1(1)n2(n2)!(1)n(n2)! yexxexyexexxex2exxexy2exexxex3exxex9求下列函数所指定的阶的导数yexcosx,求y(4yxshx,求y(100yx2sin2x,求y(50(1)令uexvcosxvsinxvcosxvsinxv(4)cosx所 ex[cosx4(sinx)6(cosx)4sinxcosx]4excosxuxvshxu1vchxvshxv(99)chxv(100)sh所 y(100)u(100)vC1u(99)vC2u(98)vC98uv(98)C99uv(99)u100chxxshx令ux2vsin2xu2xu2

v(48)248sin(2x48)248sin2x2v(49)249cos2xv(50)250sin2x 所 y(50)u(50)vC1u(49)vC2u(48)vC48uv(48)C49uv(49) C48uv(48)C49uv(49)u 50492228sin2x502x249cos2xx2(250sin2x)2y22xxyexy(1)方程两边求导数得2yy2y2xy0于 y y(2)方程两边求导数于 (y2ax)yayx2yayx2y2于 (xexy)yeyexyyxexye于 (1xey)yey 1 2x3y3a3在点(4a,4a处的切线方程和法线方程解方程两边求导数得2x32

3y0于 yx3y在点

a,2a2 222y

a(x

xy2a2 2y2a(x2a (1)方程两边求导数得yxyyxy(x)yxy yy2x21 yb2xa2yb2yxyb2 a2

b2a2y2

a2 a2ysec2(xy) sin2(xy)cos2(xy)11 cos2(x sin2(x y2y2(11)2(1y2) yeyxe ey1 1(y 2yeyy(2y)ey(y)ey(3y)ye2y(3y)(2y)2 (2y)2 (2y)34用对数求导法求下列函数的导数y(x)x1y 5x2yx2(3x)4(xxsinxxsinx(1)lnyxln|x|x1ylnxx1ln(1x)x1 1于 y(x)x[lnx1]1 1x1lny1ln|x5|1ln(x22) 1y1112x x5x2 5 x5x2于 y

[112x]5

x 5x2lny1ln(x2)4ln(3x)5ln(x1)21 45 2(x2)3 x于 x2(3x)4 45(x 2(x x xlny1lnx1lnsinx1ln(1ex) y11cotx 4(1ex于 yxsinx1ex[11cotx

xsinx1ex[22cotxex] 4(1ex) ex15求下列参数方程所确定的函数的导数dy

yx(1sinyy 解 t (2)dyycossin x1sin6xetsint求当tdy的值yet dyytetcostetsintcostsint xtetsintet

1 当t3时

dx 2331331

37写出下列曲线在所给参数值相应的点处的切线方程和法线方程ycos

在t处4

y (1dyyt2sin2t 2sin(2 2当t4时2

dx

cos4

2

x02y00y22(x222xy202y (x2即2x4y102 y6at(1t2)3at22t x3a(1t2)3at2t3a3at2

2t xt3a t2时dy224x06ay012adx1 y12a4(x6a y12a3(x6a) x 2y

xax

f(t)存在且不为零ytft(t)f1tx(1)dyy1d2y(y)t21tx d2y(y csc t cott xt 4 xtasint asint a2sin3t d2y(y) 22e2t4t e2t xt e3t xt dyytf(t)tf(t)f(t)td2y(yx)t

f

f9d3y

ytytarctanxytarctan解(1)dy(tt3)13t2dx d2

(13t2

1

)3

4 1(1dy4 t3(1t2)

1(2)dy(tarctant)1t21t (1d2y 1t2

(1t2dy t41 10落在平静水面上的石头产生同心波纹6m/s,S当t2时r6212解水深为h时r1hS1h2 水的体积为V1hS1h1h2h3dV

3h2dhdh4dV h2已知h5(m)dV4m3/min)因此dh4dV4416 h2 12溶液自深18cm直径12cm的正漏斗中漏入一直径为10cm的圆柱形筒中开始时漏斗中盛满了溶液12cm时1cm/min问此162181r2y52h r

ry61816231y22 3(3)y5 162181y352h 1y2y52h当y12时yt11122 160.64

时的y及dyy|x2dy|x2x1(3x21)x|x2y|x2x0dy|x2x01(3x21)x|x2x0y|x2 dy|x2x001(3x21)x|x22设函数yf(x)的图形如图所示试在图(a)、(b)、(c)、(d)中分别标出在点x0的dy、yydy并说明其正负(a)y0dy0y0dy0y0dy0y0dy03求下列函数的微分xy1 xxyxsin2xx2yx2yx2e2xyarcsin1x2yarctan1x21(1)y11所以dy(11)dx 因为ysin2x2xcos2xdy(sin2x2x

x21 1(x21)x2x21 1(x21)x2x2x2 (xx2dyydx[ln2(1x)]dx[2ln(1x)1]dx2ln(1x)dx x dyydx(arcsin1x2)dx

1|x|11

dx2tan(12x2)sec2(12x2)4xdx8xtan(12x2)sec2(12x2)dxdydarctan1x2 d(1x21x21(1x21

1 2x(1x2)2x(1x2)dx4xdx1(1x21

1dyd[Asin(t)]Acos(t)d(t)Acos(t)dx4将适当的函数填入下列括号内,使等式成立 )2dx )costdt )sinxdx )1dxx )e2xdx )1dxx )sec23xdx(1)d2xC)2dxd(3x2C)3xdx2d(sintC)costdtd(1cosxC)sinxdxd(ln(1x)C)1dxxd(1e2xC)e2xdx2d(2xC)1dxxd(1tan3xC)sec23xdx3s2l(12f2)SdS2l(12f2)df8ff 改变了多少?又如果不变R增加1cm问扇形面积大约改变了多少?2SdS(1R2)d1R2将60

R10030

S11002()43.63 (2)SdS(1R2)dRRRR3S 7计算下列三角函数值的近似值(1)(2)cos29cos()cossin()310.874676 2(2)已知f(xx)f(x)f(x)x当f(x)tanx时有tan(xx)tanxsec2xx所tan136tan(3)tan3sec23120.9650948(1)(2)arccos(1)f(xx)f(x)f(x)xf(x)arcsinx时1arcsin(xx)arcsinx 111arcsin0.5002arcsin(0.50.0002)arcsin

2 (2)f(xx)f(x)f(x)xf(x)arccosx时1arccos(xx)arccosx 111arccos0.4995arccos(0.50.0005)

2 9x较小时证明下列近似公式11x1tan45ln1002的近似值已知当|x|较小时f(x0x)f(x0)f(x0)x取f(x)tanxx00xx则tanxtan(0x)tan0sec0xsec20xx已知当|x|较小时f(x0x)f(x0)f(x0)x取f(x)lnxx01xx则ln(1x)ln1(lnx)|x1xx已知当|x|较小时f(x0x)f(x0)f(x0)x取f(x1x01xx则x1 x1x1

)(1)310(1)3(2)6(1)f(xnx则当|x|较小时f(1xf(1)f(1)x11xn39963100041031 10(114)9.987 3n665664126112(111)2.0052 6V1D3dV1D2D因为计算球体体积时2%以内 1D2 dVV

116

2%D

2%3 过2%312某厂生产如图所示的扇形板半径R200mm要求中心角55产品检验时一般用测量弦长l的办法来间接测量中心角如果测量弦长l时的误差101mm问此而引起的中心角测量误差x是多少?解由lRsin得2arcsinl2arcsin 当55时l2Rsin2|l|l当l1847l01时

1111(l

l2 10.10.00056(弧度)

f(x)在点x0可导是f(x)在点x0连续 条件f(x)在点x0连续是f(x)在点x0可导 f(x)在点x0的左导数f(x0)及右导数f(x0)都存在且相等是f(x)在点x0可导 条件 解(1)充分必要充分必要充分必要2选择下述题中给出的四个结论中一个正确的结论 (A)limhf(a1)f(a存在Blimf(a2hf(ah)存在 (Climf(ahf(ah存在(Dlimf(af(ah)存在 提示limf(af(ahlimf(ahf(alimf(axf(a) 3设有一根细棒取棒的一端作为原点棒上任一点的做标x为于是分布在区间上细棒的质量m是x的函数mm(x)应怎样确定细棒在点x0处的线密度(对于均匀细棒来说解mm(x0x)m(x0)在区间[x0x0x]上的平均线密度mm(x0x)m(x0) limmlimm(x0x)m(x0)m(x)x0 4根据导数的定义f(x1的导数xx解ylimx1x1lim lim 1x x0x(x x0(x x01e

xx0 x(1)f(0)limf(x)f(0limsinx0 x f(x)f f(0)lim lim limln(1x)xlne1 x

而且f(0)f(0)所以f(0)存在且f (2)因为f(0)limf(x)f(0)lim1 x x 1e

1x1f(0)limf(x)f(0)lim1e

0 x x 1e6

f(x)xsin

xx

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论