浙江省杭州拱墅区七校联考2022年数学九年级第一学期期末考试模拟试题含解析_第1页
浙江省杭州拱墅区七校联考2022年数学九年级第一学期期末考试模拟试题含解析_第2页
浙江省杭州拱墅区七校联考2022年数学九年级第一学期期末考试模拟试题含解析_第3页
浙江省杭州拱墅区七校联考2022年数学九年级第一学期期末考试模拟试题含解析_第4页
浙江省杭州拱墅区七校联考2022年数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在矩形中,,为边的中点,将绕点顺时针旋转,点的对应点为,点的对应点为,过点作交于点,连接、交于点,现有下列结论:①;②;③;④点为的外心.其中正确的是()A.①④ B.①③ C.③④ D.②④2.下列成语中描述的事件必然发生的是()A.水中捞月 B.日出东方 C.守株待兔 D.拔苗助长3.如图,已知,分别为正方形的边,的中点,与交于点,为的中点,则下列结论:①,②,③,④.其中正确结论的有()A.个 B.个 C.个 D.个4.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.55.用求根公式计算方程的根,公式中b的值为()A.3 B.-3 C.2 D.6.关于的一元二次方程有一个根为,则的值应为()A. B. C.或 D.7.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为A. B. C. D.8.下列品牌的运动鞋标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.9.下列命题中,不正确的是()A.对角线相等的矩形是正方形 B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等 D.顺次连结菱形各边中点所得的四边形是矩形10.函数y=kx﹣k(k≠0)和y=﹣(k≠0)在同一平面直角坐标系中的图象可能是()A. B.C. D.11.已知函数,当时,<x<,则函数的图象可能是下图中的()A. B.C. D.12.抛物线y=x2+6x+9与x轴交点的个数是()A.0 B.1 C.2 D.3二、填空题(每题4分,共24分)13.已知cos(a-15°)=,那么a=____________14.若抛物线经过(3,0),对称轴经过(1,0),则_______.15.如图,已知,,则_____.16.点向左平移两个单位后恰好位于双曲线上,则__________.17.如图,在中,,棱长为1的立方体的表面展开图有两条边分别在,上,有两个顶点在斜边上,则的面积为__________.18.反比例函数的图象在第象限.三、解答题(共78分)19.(8分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).20.(8分)如图1,是内任意一点,连接,分别以为边作(在的左侧)和(在的右侧),使得,,连接.(1)求证:;(2)如图2,交于点,若,点共线,其他条件不变,①判断四边形的形状,并说明理由;②当,,且四边形是正方形时,直接写出的长.21.(8分)如图,已知抛物线经过、两点,与轴相交于点.(1)求抛物线的解析式;(2)点是对称轴上的一个动点,当的周长最小时,直接写出点的坐标和周长最小值;(3)点为抛物线上一点,若,求出此时点的坐标.22.(10分)(1)将如图①所示的△ABC绕点C旋转后,得到△CA'B'.请先画出变换后的图形,再写出下列结论正确的序号是.

①;②线段AB绕C点旋转180°后,得到线段A'B';③;④C是线段BB'的中点.在第(1)问的启发下解答下面问题:(2)如图②,在中,,D是BC的中点,射线DF交BA于E,交CA的延长线于F,请猜想∠F等于多少度时,BE=CF?(直接写出结果,不需证明)(3)如图③,在△ABC中,如果,而(2)中的其他条件不变,若BE=CF的结论仍然成立,那么∠BAC与∠F满足什么数量关系(等式表示)?并加以证明.23.(10分)关于的一元二次方程有两个实数根,求的取值范围.24.(10分)如图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.(1)根据图象,直接写出满足的的取值范围;(2)求这两个函数的表达式;(3)点在线段上,且,求点的坐标.25.(12分)先化简,再求值:,其中x是方程的根.26.如图,已知是的直径,点在上,过点的直线与的延长线交于点,.求证:是的切线;求证:;点是弧的中点,交于点,若,求的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据全等三角形的性质以及线段垂直平分线的性质,即可得出;根据,且,即可得出,再根据,即可得出不成立;根据,,运用射影定理即可得出,据此可得成立;根据不是的中点,可得点不是的外心.【详解】解:为边的中点,,又,,,,,又,垂直平分,,,故①正确;如图,延长至,使得,由,,可得,可设,,则,由,,可得,,,,由,可得,而,,,即,不成立,故②错误;,,,又,,,故③正确;,是的外接圆的直径,,当时,,不是的中点,点不是的外心,故④错误.综上所述,正确的结论有①③,故选:B.【点睛】本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.2、B【分析】根据事件发生的可能性大小判断.【详解】解:A、水中捞月,是不可能事件;B、日出东方,是必然事件;C、守株待兔,是随机事件;D、拔苗助长,是不可能事件;故选B.【点睛】本题主要考查随机事件和必然事件的概念,解决本题的关键是要熟练掌握随机事件和必然事件的概念.3、B【分析】根据正方形的性质可得,然后利用SAS即可证出,根据全等三角形的性质可得:,根据直角三角形的性质和三角形的内角和,即可判断①;根据中线的定义即可判断②;设正方形的边长为,根据相似三角形的判定证出,列出比例式,即可判断③;过点作于,易证△AMN∽△AFB,列出比例式,利用勾股定理求出ME、MF和MB即可判断④.【详解】解:在正方形中,,,、分别为边,的中点,,在和中,,,,,,故①正确;是的中线,,,故②错误;设正方形的边长为,则,在中,,,,,,即,解得:,,,故③正确;如图,过点作于,∴∴△AMN∽△AFB∴,即,解得,,根据勾股定理,,,,故④正确.综上所述,正确的结论有①③④共3个故选:B.【点睛】此题考查的是正方形的性质、全等三角形的判定及性质、相似三角形的判定及性质和勾股定理,掌握正方形的性质、全等三角形的判定及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.4、D【解析】根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:,∴,由抛物线与轴的交点可知:,∴,∴,故①正确;②抛物线与轴只有一个交点,∴,∴,故②正确;③令,∴,∵,∴,∴,∴,∵,∴,故③正确;④由图象可知:令,即的解为,∴的根为,故④正确;⑤∵,∴,故⑤正确;故选D.【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.5、B【分析】根据一元二次方程的定义来解答:二次项系数是a、一次项系数是b、常数项是c.【详解】解:由方程根据一元二次方程的定义,知一次项系数b=-3,故选:B.【点睛】本题考查了解一元二次方程的定义,关键是往往把一次项系数-3误认为3,所以,在解答时要注意这一点.6、B【分析】把x=0代入方程可得到关于m的方程,解方程可得m的值,根据一元二次方程的定义m-2≠0,即可得答案.【详解】关于的一元二次方程有一个根为,且,解得,.故选B.【点睛】本题考查一元二次方程的解及一元二次方程的定义,使等式两边成立的未知数的值叫做方程的解,明确一元二次方程的二次项系数不为0是解题关键.7、D【分析】利用勾股定理即可求得BC的长,然后根据正切的定义即可求解.【详解】根据勾股定理可得:BC=∴tanA=.故选:D.【点睛】本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键.8、D【分析】根据轴对称图形和中心对称图形的定义即可得出答案.【详解】A是轴对称图形,但不是中心对称图形,故此选项不符合题意;B不是轴对称图形,也不是中心对称图形,故此选项不符合题意;C不是轴对称图形,也不是中心对称图形,故此选项不符合题意;D既是轴对称图形又是中心对称图形,故此选项符合题意.故选D.【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、A【分析】利用矩形的判定、菱形的判定、正方形的判定及平行四边形的判定定理分别进行判定后即可确定正确的选项.【详解】A.对角线相等的菱形是正方形,原选项错误,符合题意;B.对角线垂直平分的平行四边形是菱形,正确,不符合题意;C.正方形的对角线平分且相等,正确,不符合题意;D.顺次连结菱形各边中点所得的四边形是平行四边形,正确,不符合题意;故选A.【点睛】本题考查正方形、矩形、平行四边形、菱形的性质定义,根据其性质对选项进行判断是解题关键.10、D【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:由反比例函数y=﹣(k≠0)的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故A、B选项错误;由反比例函数y=﹣(k≠0)的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故C选项错误,D选项正确;故选:D.【点睛】此题主要考查一次函数与反比例函数图像综合,解题的关键是熟知一次函数与反比例函数系数与图像的关系.11、A【分析】先可判定a<0,可知=,=,可得∴a=6b,a=-6c,不妨设c=1,进而求出解析式,找出符合要求的答案即可.【详解】解:∵函数,当时,<x<,,∴可判定a<0,可知=+=,=×=∴a=6b,a=-6c,则b=-c,不妨设c=1,则函数为函数,即y=(x-2)(x+3),∴可判断函数的图像与x轴的交点坐标是(2,0),(-3,0),∴A选项是正确的.故选A.【点睛】本题考查抛物线和x轴交点的问题以及二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键.12、B【分析】根据题意,求出b2﹣4ac与0的大小关系即可判断.【详解】∵b2﹣4ac=36﹣4×1×9=0∴二次函数y=x2+6x+9的图象与x轴有一个交点.故选:B.【点睛】此题考查的是求二次函数与x轴的交点个数,掌握二次函数与x轴的交点个数和b2﹣4ac的符号关系是解决此题的关键.二、填空题(每题4分,共24分)13、45°【分析】由题意直接利用特殊角的三角函数值,进行分析计算进而得出答案.【详解】解:∵,∴a-15°=30°,∴a=45°.故答案为:45°.【点睛】本题主要考查特殊角的三角函数值,牢记是特殊角的三角函数值解题的关键.14、1【分析】由题意得,由函数图象的对称轴为直线x=1,根据点(3,1),求得图象过另一点(−1,1),代入可得a−b+c=1.【详解】解:由题意得:抛物线对称轴为直线x=1,又图象过点(3,1),∵点(3,1)关于直线x=1对称的点为(-1,1),

则图象也过另一点(−1,1),即x=−1时,a−b+c=1.

故答案为:1.【点睛】本题主要考查图象与二次函数系数之间的关系以及二次函数的对称行,重点是确定点(3,1)关于直线x=1对称的点为(-1,1).15、105°【解析】如图,根据邻补角的定义求出∠3的度数,继而根据平行线的性质即可求得答案.【详解】∵∠1+∠3=180°,∠1=75°,∴∠3=105°,∵a//b,∴∠2=∠3=105°,故答案为:105°.【点睛】本题考查了邻补角的定义,平行线的性质,熟练掌握两直线平行,内错角相等是解本题的关键.16、【分析】首先求出点P平移后的坐标,然后代入双曲线即可得解.【详解】点向左平移两个单位后的坐标为,代入双曲线,得∴故答案为-1.【点睛】此题主要考查坐标的平移以及双曲线的性质,熟练掌握,即可解题.17、16【解析】根据题意、结合图形,根据相似三角形的判定和性质分别计算出CB、AC即可.【详解】解:由题意得:DE∥MF,所以△BDE∽△BMF,所以,即,解得BD=1,同理解得:AN=6;又因为四边形DENC是矩形,所以DE=CN=2,DC=EN=3,所以BC=BD+DC=4,AC=CN+AN=8,的面积=BC×AC÷2=4×8÷2=16.故答案为:16.【点睛】本题考查正方形的性质和相似三角形的判定和性质,解题的关键是需要对正方形的性质、相似三角形的判定和性质熟练地掌握.18、二、四【解析】:∵k=-1<0,∴反比例函数y="-1/x"中,图象在第二、四象限三、解答题(共78分)19、小船到B码头的距离是10海里,A、B两个码头间的距离是(10+10)海里【解析】试题分析:过P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.试题解析:如图:过P作PM⊥AB于M,则∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B码头的距离是海里,A、B两个码头间的距离是()海里.考点:解直角三角形的应用-方向角问题.20、(1)证明见解析;(2)①四边形是矩形.理由见解析;②.【分析】(1)根据,得到,,再证,方法一:通过证明,,从而四边形是平行四边形,,所以为矩形.方法二:证明方法三:证,,.【详解】(1)∵,∴,.∴,,即..∴.(2)①四边形是矩形.理由如下:方法一:由(1)知,.∴.∵,∴.∴.∴.∵,∴,.∴,,即.∴.∴.∵.∴.∴.∴.∴.∴四边形是平行四边形.∵,,点共线,∴.∴四边形是矩形.方法二:如图由(1)知,∴.∵,,点共线,∴.∴,.又∵,∴.∴.∴.∵,∴,即.∴.∵,∴,∴,,即.∴,∴.∵,,点共线,∴.∴,.∴,即.∴.∵,,∴四边形是矩形.方法三:由(1)知,.∴.∵,∴.∴.∴.由(1)知,∴.∵,,点共线,∴.∴,.又∵,∴,∴.∴.∵,∴,即.∴.∵,∴.∴四边形是矩形.②【点睛】本题主要考查了相似三角形的性质以及矩形的性质.21、(1);(2),;(3),,【分析】(1)把、代入抛物线即可求出b,c即可求解;(2)根据A,B关于对称轴对称,连接BC交对称轴于P点,即为所求,再求出坐标及的周长;(3)根据△QAB的底边为4,故三角形的高为4,令=4,求出对应的x即可求解.【详解】(1)把、代入抛物线得解得∴抛物线的解析式为:;(2)如图,连接BC交对称轴于P点,即为所求,∵∴C(0,-3),对称轴x=1设直线BC为y=kx+b,把,C(0,-3)代入y=kx+b求得k=1,b=-3,∴直线BC为y=x-3令x=1,得y=-2,∴P(1,-2),∴的周长=AC+AP+CP=AC+BC=+=;(3)∵△QAB的底边为AB=4,∴三角形的高为4,令=4,即解得x1=,x2=,x3=1故点的坐标为,,.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法与一次函数的求解.22、(1)①②③④;(2);(3),证明见解析【分析】(1)通过旋转的性质可知①②③④正确;(2)可结合题意画出图形使BE=CF,然后通过测量得出猜想,再证明△BEF′是等边三角形即可证明;(3)结合(2)可进一步猜想,若∠F'=∠BED则可推出BE=CF,结合三角形外角的性质可知时∠F'=∠BED,依此证明即可.【详解】解:(1)如图①,根据旋转的性质,知①②④都是正确的,根据旋转的性质可得∠A′=∠A,∴A′B′∥AB,③正确,故答案为:①②③④.(2)∠F等于60°度时,BE=CF.

证明如下:∵D是BC的中点,∴BD=DC,如下图,将△CDF,绕点D旋转180°后,得到△BDF′,由旋转的性质可知,∠C=∠F′BC,CF=BF′∴CF∥BF′,∠F′=∠F=60°,

∴∠CAB+∠ABF′=180°,

∵∠BAC=120°,

∴∠ABF′=60°,∴∠F′EB=120°-∠ABF′-∠F′=60°,

∴△BEF′是等边三角形,

∴BE=BF′=CF.(3)数量关系:∠BAC=2∠F.证明如下:作△DBF'与△FCD关于点D成中心对称,如下图,则∠F'=∠F,FC=BF',∵∠BAC=2∠F,∠BAC=∠F+∠FEA,∴∠F=∠FEA,∴∠F'=∠F=∠BED=∠FEA,∴BE=CF.【点睛】本题考查旋转的性质,等边三角形的性质和判定,等腰三角形的性质和判定,三角形外角的性质.理解旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变是解决(1)的关键.(2)中能结合题意画出对应图形,正确猜想是解题关键;(3)中主要是要理解等腰三角形“等角对等边”.23、.【分析】根据判别式即可求出的取值范围.【详解】∵,,,方程有两个实数根,∴,∴,∴.【点睛】本题主要考查了根的判别式的应用,解题的关键是熟记根的判别式.24、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论