2023届江苏省苏州苏州工业园区四校联考数学九上期末监测试题含解析_第1页
2023届江苏省苏州苏州工业园区四校联考数学九上期末监测试题含解析_第2页
2023届江苏省苏州苏州工业园区四校联考数学九上期末监测试题含解析_第3页
2023届江苏省苏州苏州工业园区四校联考数学九上期末监测试题含解析_第4页
2023届江苏省苏州苏州工业园区四校联考数学九上期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列条件中,一定能判断两个等腰三角形相似的是()A.都含有一个40°的内角 B.都含有一个50°的内角C.都含有一个60°的内角 D.都含有一个70°的内角2.已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正确的是A.①②③ B.②③④ C.①③④ D.①②④3.方程的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-14.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20° B.25° C.30° D.40°5.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2) B.图象位于第二、四象限C.若x<﹣2,则0<y<3 D.在每一个象限内,y随x值的增大而减小6.如图,抛物线的对称轴为直线,与轴的一个交点在和之间,下列结论:①;②;③;④若是该抛物线上的点,则;其中正确的有()A.1个 B.2个 C.3个 D.4个7.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A. B.2 C. D.8.方程是关于的一元二次方程,则A. B. C. D.9.已知,则下列各式中正确的是()A. B. C. D.10.如图,将的三边扩大一倍得到(顶点均在格点上),如果它们是以点为位似中心的位似图形,则点的坐标是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,将绕点顺时针旋转得到,点的对应点是点,直线与直线所夹的锐角是_______.12.抛物线y=ax2+bx+c的部分图象如图所示,则当y<0时,x的取值范围是_____.13.写出一个具有性质“在每个象限内y随x的增大而减小”的反比例函数的表达式为________.14.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.15.反比例函数的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k=____________.16.分式方程=1的解为_____17.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.18.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最少是由________个正方体搭成的。三、解答题(共66分)19.(10分)如图,AB∥CD,AC与BD的交点为E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求AC,CD的长.20.(6分)若一条圆弧所在圆半径为9,弧长为,求这条弧所对的圆心角.21.(6分)一个不透明的口袋中有1个大小、质地完全相同的乒乓球,球面上分别标有数-1,2,-3,1.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为________.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.22.(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为,图①中m的值为;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.23.(8分)如图,半圆O的直径AB=10,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB交于点P,求AP的长.24.(8分)如图,直线与双曲线在第一象限内交于、两点,已知,.(1)__________,____________________,____________________.(2)直接写出不等式的解集;(3)设点是线段上的一个动点,过点作轴于点,是轴上一点,求的面积的最大值.25.(10分)如图,为外接圆的直径,点是线段延长线上一点,点在圆上且满足,连接,,,交于点.(1)求证:.(2)过点作,垂足为,,,求证:.26.(10分)如图,在中,,,垂足分别为,与相交于点.(1)求证:;(2)当时,求的长.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题解析:因为A,B,D给出的角可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C.有一个的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.2、D【分析】利用全等三角形的性质条件勾股定理求出的长,再利用相似三角形的性质求出△BMF的面积即可【详解】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE△AFG,∴EF=FG∵DE=BG∴EF=FG=BG+FB=DE+BF故①正确∵BC=CD=AD=4,EC=1∴DE=3,设BF=x,则EF=x+3,CF=4-x,在Rt△ECF中,(x+3)2=(4-x)2+12解得x=∴BF=,AF=故②正确,③错误,∵BM∥AG∴△FBM~△FGA∴∴S△MEF=,故④正确,故选D.【点睛】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题3、C【分析】根据因式分解法,可得答案.【详解】解:,方程整理,得,x2-x=0

因式分解得,x(x-1)=0,

于是,得,x=0或x-1=0,

解得x1=0,x2=1,

故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.4、B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=∠DOC=25°.

故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.5、D【分析】根据反比例函数的性质对各选项进行逐一分析即可.【详解】A、∵(﹣3)×2=﹣6,∴图象必经过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C、∵x=-2时,y=3且y随x的增大而而增大,∴x<﹣2时,0<y<3,故本选项正确;D、函数图象的两个分支分布在第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选D.【点睛】本题考查的是反比例函数的性质,在解答此类题目时要注意其增减性限制在每一象限内,不要一概而论.6、C【分析】根据抛物线的对称轴可判断①;由抛物线与x轴的交点及抛物线的对称性可判断②;由x=-1时y>0可判断③;根据抛物线的开口向下且对称轴为直线x=-2知图象上离对称轴水平距离越小函数值越大,可判断④.【详解】∵抛物线的对称轴为直线,

∴,所以①正确;

∵与x轴的一个交点在(-3,0)和(-4,0)之间,

∴由抛物线的对称性知,另一个交点在(-1,0)和(0,0)之间,

∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;

∵由②、①知,时y>0,且,

即>0,所以③正确;∵点与点关于对称轴直线对称,∴,∵抛物线的开口向下,且对称轴为直线,

∴当,函数值随的增大而减少,

∵,∴,∴,故④错误;综上:①②③正确,共3个,

故选:C.【点睛】本题考查了二次函数与系数的关系:对于二次函数,二次项系数a决定抛物线的开口方向和大小;一次项系数b和二次项系数a共同决定对称轴的位置;常数项c决定抛物线与y轴交点;抛物线与x轴交点个数由决定.7、C【解析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.考点:圆周角定理;锐角三角函数的定义.8、D【分析】根据一元二次方程的定义,得到关于的不等式,解之即可.【详解】解:根据题意得:,解得:,故选.【点睛】本题考查一元二次方程的定义,解题关键是正确掌握一元二次方程的定义.9、A【分析】根据比例的性质,逐项分析即可.【详解】A.∵,∴,∴,正确;B.∵,∴,∴,故不正确;C.∵,∴,故不正确;D.∵,∴,∴,故不正确;故选A.【点睛】本题考查了比例的性质,熟练掌握比例的性质是解答本题的关键,如果,那么或或.10、D【分析】根据位似中心的定义作图即可求解.【详解】如图,P点即为位似中心,则P故选D.【点睛】此题主要考查位似中心,解题的关键是熟知位似的特点.二、填空题(每小题3分,共24分)11、【分析】延长DE交AC于点O,延长BC交DE的延长线于点F,然后根据旋转的性质分别求出∠EAC=55°,∠AED=∠ACB,再根据对顶角相等,可得出∠DFB=∠EAC=55°.【详解】解:延长DE交AC于点O,延长BC交DE的延长线于点F由题意可得:∠EAC=55°,∠AED=∠ACB∴∠AEF=∠ACF又∵∠AOE=∠FOC∴∠DFB=∠EAC=55°故答案为:55°【点睛】本题考查旋转的性质,掌握旋转图形对应角相等是本题的解题关键.12、x<﹣1或x>1.【分析】利用二次函数的对称性得到抛物线与x轴的另一个交点坐标为(1,0),然后写出抛物线在x轴下方所对应的自变量的范围即可.【详解】∵抛物线的对称轴为直线,

而抛物线与轴的一个交点坐标为(-1,0),

∴抛物线与轴的另一个交点坐标为(1,0),

∴当时,的取值范围为或.

故答案为:或.【点睛】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.13、y=(答案不唯一)【解析】根据反比例函数的性质,只需要当k>0即可,答案不唯一.故答案为y=(答案不唯一).14、1【分析】根据△EBD由△ABC旋转而成,得到△ABC≌△EBD,则BC=BD,∠EBD=∠ABC=30°,则有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化简计算即可得出.【详解】解:∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案为1.【点睛】此题考查旋转的性质,即图形旋转后与原图形全等.15、1【分析】根据平移的特性写出点Q的坐标,由点P、Q均在反比例函数的图象上,即可得出k=2n=3(n﹣1),解出即可.【详解】∵点P的坐标为(2,n),则点Q的坐标为(3,n﹣1),依题意得:k=2n=3(n﹣1),解得:n=3,∴k=2×3=1,故答案为1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义,解题的关键:由P点坐标表示出Q点坐标.16、x=0.1【解析】分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.详解:方程两边都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,当x=1时,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案为:x=0.1点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.17、或【分析】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.利用平行线分线段成比例定理解答即可.【详解】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.∵DH∥CE,∴.设BH=x,则HE=3x,∴BE=4x.∵E是AB的中点,∴AE=BE=4x.∵EM∥HD,∴.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.∵DC=3DB,∴BC=2DB.∵BH∥CE,∴.设DH=x,则HM=2x.∵E是AB的中点,EM∥BH,∴,∴AM=MH=2x,∴.综上所述:的值为或.故答案为:或.【点睛】本题考查了平行线分线段成比例定理.掌握辅助线的作法是解答本题的关键.18、【分析】易得这个几何体共有3层,由俯视图可得第一层立方体的个数,由主视图可得第二层、第三层立方体最少的个数,相加即可.【详解】结合主视图和俯视图可知,第一层、第二层最少各层最少1个,第三层一定有3个,∴组成这个几何体的小正方体的个数最少是1个,故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、解答题(共66分)19、(1)详见解析;(2)AC=9,CD=.【分析】(1)根据相似三角形的判定证明即可;(2)利用相似三角形的性质解答即可.【详解】证明:(1)∵∠ABE=∠ACB,∠A=∠A,∴△ABE∽△ACB;(2)∵△ABE∽△ACB,∴,∴AB2=AC•AE,∵AB=6,AE=4,∴AC=,∵AB∥CD,∴△CDE∽△ABE,∴,∴.【点睛】此题考查相似三角形的判定和性质,关键是根据相似三角形的判定证明△ABE∽△ACB.20、【分析】根据弧长公式计算即可.【详解】∵,,∴,∴【点睛】此题考查弧长公式,熟记公式并掌握各字母的意义即可正确解答.21、(1);(2)【分析】(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,找出两次摸出的乒乓球球面上的数之和是正数的结果数,然后根据公式求解.【详解】(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率;故答案为;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8,所以两次摸出的乒乓球球面上的数之和是正数的概率.【点睛】本题考查了列表法与树状图法,解题的关键是掌握列表法与树状图法求公式.22、(1)40人;1;(2)平均数是15;众数16;中位数15.【分析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,∴这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.23、AP=10﹣5.【分析】先根据题意判断出△O′PB是等腰直角三角形,由勾股定理求出PB的长,进而可得出AP的长.【详解】解:连接PO´∵∠OBA′=45°,O′P=O′B,∴∠O´PB=∠O´BP=45°,∠PO´B=90°∴△O′PB是等腰直角三角形,∵AB=10,∴O′P=O′B=5,∴PB==BO′=5,∴AP=AB﹣BP=10﹣5.【点睛】本题考查了旋转的性质、勾股定理、等腰直角三角形的判定,根据旋转性质判定出△O′PB是等腰直角三角形解题的关键.24、(1),,.(2)或.(3)当时,有最大值,最大值为【分析】(1)先求出反比例函数解析式,进而求出点A坐标,最后用待定系数法,即可得出结论;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论