2022-2023学年黑龙江省哈尔滨双城区六校联考数学九上期末质量跟踪监视模拟试题含解析_第1页
2022-2023学年黑龙江省哈尔滨双城区六校联考数学九上期末质量跟踪监视模拟试题含解析_第2页
2022-2023学年黑龙江省哈尔滨双城区六校联考数学九上期末质量跟踪监视模拟试题含解析_第3页
2022-2023学年黑龙江省哈尔滨双城区六校联考数学九上期末质量跟踪监视模拟试题含解析_第4页
2022-2023学年黑龙江省哈尔滨双城区六校联考数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将抛物线向左平移3个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为()A. B.C. D.2.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120°,60° B.95°,105° C.30°,60° D.90°,90°3.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1964.若点是反比例函数图象上一点,则下列说法正确的是()A.图象位于二、四象限B.当时,随的增大而减小C.点在函数图象上D.当时,5.已知甲、乙两地相距100(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(t)与行驶速度v(km/h)的函数关系图象大致是().A. B. C. D.6.如图,已知抛物线与轴分别交于、两点,将抛物线向上平移得到,过点作轴交抛物线于点,如果由抛物线、、直线及轴所围成的阴影部分的面积为,则抛物线的函数表达式为()A. B.C. D.7.方程变为的形式,正确的是()A. B.C. D.8.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.﹣3 B.﹣1 C.2 D.39.某商品原价格为100元,连续两次上涨,每次涨幅10%,则该商品两次上涨后的价格为()A.121元 B.110元 C.120元 D.81元10.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为()A.a﹣b=1 B.a﹣b=﹣1 C.a﹣b=0 D.a﹣b=±111.如图,二次函数y=ax1+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①1a+b=0;②4a﹣1b+c<0;③b1﹣4ac>0;④当y<0时,x<﹣1或x>1.其中正确的有()A.4个 B.3个 C.1个 D.1个12.已知点都在双曲线上,且,则的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的点A'处,若AO=OB=2,则图中阴影部分面积为_____.14.若,则的值为_____.15.若关于x的方程有两个不相等的实数根,则a的取值范围是________.16.计算:sin45°=____________.17.已知:如图,,,分别切于,,点.若,则的周长为________.18.一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,1.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程有实数根的概率是_________.三、解答题(共78分)19.(8分)如图,抛物线经过点,请解答下列问题:求抛物线的解析式;抛物线的顶点为点,对称轴与轴交于点,连接,求的长.点在抛物线的对称轴上运动,是否存在点,使的面积为,如果存在,直接写出点的坐标;如果不存在,请说明理由.20.(8分)如图所示,在中,,,,点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.连接,设运动时间为.(1)当为何值时,?(2)设的面积为,求与的函数关系式,并求出当为何值时,取得最大值?的最大值是多少?21.(8分)解不等式组,并求出不等式组的整数解之和.22.(10分)已知关于x的方程x2+mx+m-2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.23.(10分)如图,△ABC是等边三角形,点D在AC边上,将△BCD绕点C旋转得到△ACE.(1)求证:DE∥BC.(2)若AB=8,BD=7,求△ADE的周长.24.(10分)某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有人达标;(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?25.(12分)如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=6,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE于点H,证明:GH=CH.26.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(Ⅰ)若花园的面积是252m2,求AB的长;(Ⅱ)当AB的长是多少时,花园面积最大?最大面积是多少?

参考答案一、选择题(每题4分,共48分)1、D【分析】先得到抛物线y=x2-2的顶点坐标为(0,-2),再把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),得到平移后抛物线的顶点坐标,然后根据顶点式写出解析式即可.【详解】解:抛物线y=x2-2的顶点坐标为(0,-2),把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),

所以平移后抛物线的解析式为y=(x+3)2+1,

故选:D.【点睛】本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式,然后把抛物线的平移问题转化为顶点的平移问题.2、D【分析】根据两个直角互补的定义即可判断.【详解】解:∵互补的两个角可以都是直角,∴能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90°,90°,故选:D.考点:本题考查的是两角互补的定义点评:解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180°,则这两个角互补.3、C【详解】试题分析:一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:50+50(1+x)+50(1+x)2=1.故选C.4、B【分析】先根据点A(3、4)是反比例函数y=图象上一点求出k的值,求出函数的解析式,由此函数的特点对四个选项进行逐一分析.【详解】∵点A(3,4)是反比例函数y=图象上一点,

∴k=xy=3×4=12,

∴此反比例函数的解析式为y=,

A、因为k=12>0,所以此函数的图象位于一、三象限,故本选项错误;

B、因为k=12>0,所以在每一象限内y随x的增大而减小,故本选项正确;

C、因为2×(-6)=-12≠12,所以点(2、-6)不在此函数的图象上,故本选项错误;

D、当y≤4时,即y=≤4,解得x<0或x≥3,故本选项错误.

故选:B.【点睛】此题考查反比例函数图象上点的坐标特点,根据题意求出反比例函数的解析式是解答此题的关键.5、C【分析】根据题意写出t与v的关系式判断即可.【详解】根据题意写出t与v的关系式为,故选C.【点睛】本题是对反比例函数解析式和图像的考查,准确写出解析式并判断其图像是解决本题的关键.6、A【分析】利用二次函数图象上点的坐标特征求出抛物线与x轴交点的横坐标,由阴影部分的面积等于矩形OABC的面积可求出AB的长度,再利用平移的性质“左加右减,上加下减”,即可求出抛物线的函数表达式.【详解】当y=0时,有(x−2)2−2=0,解得:x1=0,x2=1,∴OA=1.∵S阴影=OA×AB=16,∴AB=1,∴抛物线的函数表达式为y=(x−2)2−2+1=故选A.【点睛】本题考查了抛物线与x轴的交点、矩形的面积以及二次函数图形与几何变换,观察图形,找出阴影部分的面积等于矩形OABC的面积是解题的关键.7、B【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2﹣2x=3,配方得:x2﹣2x+1=1,即(x﹣1)2=1.故选B.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法的步骤是解答本题的关键.8、A【分析】根据一元二次方程根与系数的关系即可得出答案.【详解】由根与系数的关系得故选:A.【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.9、A【分析】依次列出每次涨价后的价格即可得到答案.【详解】第一次涨价后的价格为:,第二次涨价后的价格为:121(元),故选:A.【点睛】此题考查代数式的列式计算,正确理解题意是解题的关键.10、B【分析】把x=﹣a代入方程得到一个二元二次方程,方程的两边都除以a,即可得出答案.【详解】把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴两边都除以a得:a﹣b+1=0,即a﹣b=﹣1,故选:B.【点睛】此题考查一元二次方程的解,是方程的解即可代入方程求其他未知数的值或是代数式的值.11、B【分析】根据二次函数的图象和二次函数的性质,可以判断各个小题中的结论是否成立,从而可以解答本题.【详解】∵二次函数y=ax1+bx+c(a≠0)的对称轴为x=1,∴﹣=1,得1a+b=0,故①正确;当x=﹣1时,y=4a﹣1b+c<0,故②正确;该函数图象与x轴有两个交点,则b1﹣4ac>0,故③正确;∵二次函数y=ax1+bx+c(a≠0)的对称轴为x=1,点B坐标为(﹣1,0),∴点A(3,0),∴当y<0时,x<﹣1或x>3,故④错误;故选B.【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.12、D【分析】分别将A,B两点代入双曲线解析式,表示出和,然后根据列出不等式,求出m的取值范围.【详解】解:将A(-1,y1),B(2,y2)两点分别代入双曲线,得,,∵y1>y2,,解得,故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,解不等式.反比例函数图象上的点的坐标满足函数解析式.二、填空题(每题4分,共24分)13、.【分析】根据等腰三角形的性质求出AB,再根据旋转的性质可得BA′=AB,然后求出∠OA′B=30°,再根据直角三角形两锐角互余求出∠A′BA=60°,即旋转角为60°,再根据S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′,然后利用扇形的面积公式列式计算即可得解.【详解】解:∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴AB=2OA=2OB=4,BC=2,∵△ABC绕点B顺时针旋转点A在A′处,∴BA′=AB,∴BA′=2OB,∴∠OA′B=30°,∴∠A′BA=60°,即旋转角为60°,S阴影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′==.故答案为:.【点睛】本题考查了阴影部分面积的问题,掌握等腰直角三角形的性质、旋转的性质、扇形面积公式是解题的关键.14、.【解析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.15、且【分析】根据根的判别式∆>0,且二次项系数a-2≠0列式求解即可.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】由题意得,解得且,故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.解答时要注意二次项的系数不能等于零.16、1.【分析】根据sin45°=代入计算即可.【详解】sin45°=,故答案为:1.【点睛】本题考查特殊角的三角函数值,熟练记忆是关键.17、【分析】根据切线长定理由PA、PB分别切⊙O于A、B得到PB=PA=10cm,由于DC与⊙O相切于E,再根据切线长定理得到CA=CE,DE=DB,然后三角形周长的定义得到△PDC的周长=PD+DC+PC=PD+DB+CA+PC,然后用等线段代换后得到三角形PDC的周长等于PA+PB.【详解】∵PA、PB分别切⊙O于A、B,

∴PB=PA=10cm,

∵CA与CE为⊙的切线,

∴CA=CE,

同理得到DE=DB,

∴△PDC的周长=PD+DC+PC=PD+DB+CA+PC

∴△PDC的周长=PA+PB=20cm,

故答案为20cm.【点睛】本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.18、【分析】由题意通过列表求出p、q的所有可能,再由根的判别式就可以求出满足条件的概率.【详解】解:由题意,列表为:∵通过列表可以得出共有6种情况,其中能使关于x的方程有实数根的有3种情况,∴P满足关于x的方程有实数根为.故答案为:.【点睛】本题考查列表法或树状图求概率的运用,根的判别式的运用,解答时运用列表求出所有可能的情况是关键.三、解答题(共78分)19、(1)y=-x2+2x+3;(2)2;(3)存在点F,点F(1,2)或(1,-2)【分析】(1)利用待定系数法即可求出结论;(2)先求出顶点D的坐标,然后分别求出BE和DE的长,利用勾股定理即可求出结论;(3)先求出BC的长,然后根据三角形的面积公式即可求出点F的纵坐标,从而求出结论.【详解】解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),∴将A(0,3),B(-1,0)代入得:,解得:则抛物线解析式为y=-x2+2x+3;(2)y=-x2+2x+3=-(x-1)2+4由D为抛物线顶点,得到D(1,4),∵

对称轴与

x

轴交于点E

,∴

DE=4,OE=1

,∵

B(﹣1,0),∴

BO=1,∴

BE=2,在

RtBED

中,根据勾股定理得:

BD==2(3)抛物线的对称轴为直线x=1由对称性可得:点C的坐标为(3,0)∴BC=3-(-1)=4∵的面积为,∴BC·=4解得:=2或-2∴点F的坐标为(1,2)或(1,-2)即存在点F,点F(1,2)或(1,-2)【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、勾股定理和三角形的面积公式是解决此题的关键.20、(1)(2)S=−(t−)2+,t=,S有最大值,最大值为.【分析】(1)利用分线段成比例定理构建方程即可解决问题.(2)构建二次函数,利用二次函数的性质解决问题即可.【详解】(1)∵PQ⊥AC,∴∠AQP=∠C=90°,∴PQ∥BC,∴,在Rt△ACB中,AB=∴,解得t=,∴t为时,PQ⊥AC.(2)如图,作PH⊥AC于H.∵PH∥BC,∴,∴,∴PH=(5−t),∴S=•AQ•PH=×t×(5−t)=−t2+t=−(t−)2+,∵−<0,∴t=,S有最大值,最大值为.【点睛】本题考查平行线分线段成比例定理,二次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、1.【解析】分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可.详解:解不等式(x+1)≤2,得:x≤3,解不等式,得:x≥0,则不等式组的解集为0≤x≤3,所以不等式组的整数解之和为0+1+2+3=1.点睛:此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.22、(1);(2)证明见解析.【解析】试题分析:一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.(1)直接把x=1代入方程x2+mx+m﹣2=0求出m的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0,得:1+m+m﹣2=0,解得:m=;(2)∵△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.考点:根的判别式;一元二次方程的解.23、(1)见解析;(2)1【分析】(1)由旋转的性质可得CD=CE,∠ACB=∠ACE=60°,可得∠CDE=60°=∠ACB,可证DE∥BC;(2)由旋转的性质可得AE=BD=7,即可求△ADE的周长.【详解】证明:(1)∵△ABC是等边三角形,∴AB=BC=AC,∠ACB=60°,∵将△BCD绕点C旋转得到△ACE.∴CD=CE,∠ACB=∠ACE=60°,∴△CDE是等边三角形,∴∠CDE=60°=∠ACB,∴DE∥BC;(2)∵将△BCD绕点C旋转得到△ACE.∴AE=BD=7,∵△ADE的周长=AE+DE+AD=AE+DC+AD=AE+AC,∴△ADE的周长=7+8=1.【点睛】本题考查了旋转的性质,等边三角形的性质,解决本题的关键是正确理解题意,能够熟练掌握旋转的性质和等边三角形的性质,找到相等的线段和角.24、(1)详见解析;(2)1;(3)10【分析】(1)成绩一般的学生占的百分比=1﹣成绩优秀的百分比﹣成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数,然后补全图形即可.(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.【详解】(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1.(3)1200×(50%+30%)=10(人).答:估计全校达标的学生有10人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25、(1)AE=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论