版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.cm C.8cm D.cm2.若关于x的一元二次方程有两个实数根,则k的取值范围是()A. B. C. D.3.二次函数y=-2(x+1)2+5的顶点坐标是()A.-1 B.5 C.(1,5) D.(-1,5)4.如图,已知∥∥,,那么的值是()A. B. C. D.25.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=24°,则的度数为()A.24° B.56° C.66° D.76°6.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为()A.OF=CF B.AF=BF C. D.∠DBC=90°7.已知a≠0,下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a58.如图,在矩形中,,的平分线交边于点,于点,连接并延长交边于点,连接交于点,给出下列命题:(1)(2)(3)(4)其中正确命题的个数是()A. B. C. D.9.如图,扇形AOB中,半径OA=2,∠AOB=120°,C是弧AB的中点,连接AC、BC,则图中阴影部分面积是()A. B.C. D.10.下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯11.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.12.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.7二、填空题(每题4分,共24分)13.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是______.14.在实数范围内定义一种运算“※”,其规则为a※b=a2﹣b,根据这个规则,方程(x+2)※9=0的解为_____.15.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=15,则四边形ABCD的周长为_____.16.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.17.在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.随机摸出一只球记下颜色后放回,不断重复上述实验,统计数据如下:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601共有白球___________只.18.如图,某园林公司承担了绿化某社区块空地的绿化任务,工人工作一段时间后,提高了工作效率.该公司完成的绿化面积(单位:与工作时间(单位:)之间的函数关系如图所示,则该公司提高工作效率前每小时完成的绿化面积是____________.三、解答题(共78分)19.(8分)(1)x2﹣2x﹣3=0(2)cos45°•tan45°+tan30°﹣2cos60°2sin45°20.(8分)已知是的反比例函数,下表给出了与的一些值:141(1)写出这个反比例函数表达式;(2)将表中空缺的值补全.21.(8分)阅读材料,回答问题:材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案(3)请直接写出题2的结果.22.(10分)如图已知一次函数y1=2x+5与反比例函数y2=(x<0)相交于点A,B.(1)求点A,B的坐标;(2)根据图象,直接写出当y₁≤y₂时x的取值范围.23.(10分)如图,已知正方形ABCD,点E为AB上的一点,EF⊥AB,交BD于点F.(1)如图1,直按写出的值;(2)将△EBF绕点B顺时针旋转到如图2所示的位置,连接AE、DF,猜想DF与AE的数量关系,并证明你的结论;(3)如图3,当BE=BA时,其他条件不变,△EBF绕点B顺时针旋转,设旋转角为α(0°<α<360°),当α为何值时,EA=ED?在图3或备用图中画出图形,并直接写出此时α=.24.(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=1.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.25.(12分)“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.26.如图,在△ABC中,点D在AB上,∠ACD=∠B,AB=5,AD=3,求AC的长.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==6cm,∴圆锥的高为=3cm故选B.考点:圆锥的计算.2、D【解析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键3、D【解析】直接利用顶点式的特点写出顶点坐标.【详解】因为y=2(x+1)2-5是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(-1,5).故选:D.【点睛】主要考查了求抛物线的顶点坐标的方法,熟练掌握顶点式的特点是解题的关键.4、A【分析】根据平行线分线段成比例定理得到AC:CE=BD:DF=1:2,然后利用比例性质即可得出答案进行选择.【详解】解:∵AB∥CD∥EF,∴AC:CE=BD:DF,∵,∴AC:CE=BD:DF=1:2,即CE=2AC,∴AC:AE=1:3=.故选A.【点睛】本题考查平行线分线段成比例即三条平行线截两条直线,所得的对应线段成比例.5、C【分析】先求出∠B的度数,然后再根据圆周角定理的推论解答即可.【详解】∵AB是⊙O的直径∴∵∠BAD=24°∴又∵∴=66°故答案为:C.【点睛】本题考查了圆周角定理的推论:①在同圆或等圆中同弧或等弧所对圆周角相等;②直径所对圆周角等于90°6、A【分析】分别根据垂径定理及圆周角定理对各选项进行分析即可.【详解】解:∵DC是⊙O直径,弦AB⊥CD于点F,
∴AF=BF,,∠DBC=90°,
∴B、C、D正确;
∵点F不一定是OC的中点,
∴A错误.故选:A.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.7、C【分析】结合选项分别进行同底数幂的乘法、同底数幂的除法、幂的乘方的运算,选出正确答案.【详解】A、a2和a3不是同类项,不能合并,故本选项错误;B、a2•a3=a5,原式计算错误,故本选项错误;C、a3÷a2=a,计算正确,故本选项正确;D、(a2)3=a6,原式计算错误,故本选项错误.故选:C.【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方等运算,掌握运算法则是解答本题的关键.8、D【分析】根据矩形的性质,勾股定理,等腰三角形的判定与性质以及全等三角形的判定与性质逐一对各命题进行分析即可得出答案.【详解】(1)在矩形ABCD中,∵DE平分∴∵∴是等腰直角三角形∴∴∵是等腰直角三角形∴∴∴∴∴,故(1)正确;(2),∴,故(2)正确;(3)∵∴∵∴∴∴∴∴∴∴,故(3)正确;(4)∵在和中,∴∴在和中,∴∴∴,故(4)正确故选D【点睛】本题考查了矩形的性质,勾股定理,全等三角形的判定及性质,等腰三角形的性质等,熟练掌握和灵活运用相关知识是解题的关键.9、A【解析】试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是,扇形面积是S=πr2=,所以阴影部分面积是扇形面积减去四边形面积即.故选A.10、A【解析】解:A.通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B.抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C.明天会下雨,是随机事件,故C选项不符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选A.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11、A【分析】根据概率公式解答即可.【详解】袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率为:.故选A.【点睛】本题考查了随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12、B【分析】直接利用相似三角形的性质得出,故,进而得出AM的长即可得出答案.【详解】解:由题意可得:OC∥AB,则△MBA∽△MCO,∴,即解得:AM=1.故选:B.【点睛】此题主要考查了相似三角形的应用,根据题意得出△MBA∽△MCO是解题关键.二、填空题(每题4分,共24分)13、k<5且k≠1.【解析】试题解析:∵关于x的一元二次方程有两个不相等的实数根,解得:且故答案为且14、x1=1,x2=﹣1.【分析】先阅读题目,根据新运算得出(x+2)2﹣9=0,移项后开方,即可求出方程的解.【详解】解:(x+2)※9=0,(x+2)2﹣9=0,(x+2)2=9,x+2=±3,x1=1,x2=﹣1,故答案为x1=1,x2=﹣1.【点睛】此题主要考查一元二次方程的求解,解题的关键是根据题意列方程.15、1【分析】根据切线长定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=25,根据四边形的周长公式计算,得到答案.【详解】∵四边形ABCD是⊙O的外切四边形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=25,∴四边形ABCD的周长=AD+BC+AB+CD=25+25=1,故答案为:1.【点睛】本题考查的是切线长定理,掌握从圆外一点引圆的两条切线,它们的切线长相等是解题的关键.16、【解析】过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.17、30【分析】根据利用频率估计概率得到摸到白球的概率为60%,然后根据概率公式计算n的值.【详解】白球的个数=只故答案为:30【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率18、【分析】利用待定系数法求出提高效率后与的函数解析式,由此可得时,的值,然后即可得出答案.【详解】由题意,可设提高效率后得与的函数解析式为将和代入得解得因此,与的函数解析式为当时,则该公司提高工作效率前每小时完成的绿化面积故答案为:100.【点睛】本题考查了一次函数的实际应用,依据图象,利用待定系数法求出函数解析式是解题关键.三、解答题(共78分)19、(1)x1=3,x2=﹣1;(2)1﹣【分析】(1)利用因式分解法解方程即可;(2)根据特殊角的三角函数值计算即可.【详解】解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.(2)原式=×1+×﹣2××2×=+1﹣=1﹣【点睛】此题考查的是解一元二次方程和特殊角的锐角三角函数值,掌握用因式分解法解一元二次方程和各个特殊角的锐角三角函数值是解决此题的关键.20、(1);(2),-4,,-1,3,2,3,【分析】(1)设出反比例函数解析式,把代入解析式即可得出答案;(2)让的乘积等于3计算可得表格中未知字母的值.【详解】解:(1)设,,∴(2)=,=-4,=,=-1,=3,=2,=3,=.故答案为:,-4,,-1,3,2,3,.【点睛】本题考查了反比例函数的解析式,熟练掌握解析式的求法是解题的关键.21、题1.;题2.(1)至少摸出两个绿球;(2)方案详见解析;(3).【解析】试题分析:题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球;(2)写出方案;(3)直接写结果即可.试题解析:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:.题2:列表得:
锁1
锁2
钥匙1
(锁1,钥匙1)
(锁2,钥匙1)
钥匙2
(锁1,钥匙2)
(锁2,钥匙2)
钥匙3
(锁1,钥匙3)
(锁2,钥匙3)
所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则P==.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3).考点:随机事件.22、(1)A点的坐标为(﹣,2),B点的坐标为(﹣1,3);(2)x≤﹣或﹣1≤x<1.【分析】(1)联立两函数解析式,解方程组即可得到交点坐标;(2)写出一次函数图象在反比例函数图象下方的x的取值范围即可.【详解】解:(1)联立两函数解析式得,,解得或,所以A点的坐标为(﹣,2),B点的坐标为(﹣1,3);(2)根据图象可得,当y₁≤y₂时x的取值范围是x≤﹣或﹣1≤x<1.【点睛】本题考查了反比例函数与一次函数图象的交点问题,根据解析式列出方程组求出交点坐标是解题的关键.23、(1);(2)DF=AE,理由见解析;(3)作图见解析,30°或150°【分析】(1)直接利用等腰直角三角形的性质计算即可得出结论;(2)先判断出,进而得出△ABE∽△DBF,即可得出结论;(3)先判断出点E在AD的中垂线上,再判断出△BCE是等边三角形,求出∠CBE=60°,再分两种情况计算即可得出结论.【详解】(1)∵BD是正方形ABCD的对角线,∴∠ABD=45,BD=AB,∵EF⊥AB,∴∠BEF=90,∴∠BFE=∠ABD=45,∴BE=EF,∴BF=BE,∴DF=BD﹣BF=AB﹣BE=(AB﹣BE)=AE,∴,故答案为:;(2)DF=AE,理由:由(1)知,BF=BE,BD=AB,∠BFE=∠ABD=45,∴,由旋转知,∠ABE=∠DBF,∴△ABE∽△DBF,∴,∴DF=AE;(3)如图3,连接DE,CE,∵EA=ED,∴点E在AD的中垂线上,∴AE=DE,BE=CE,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90,AB=BC,∴BE=CE=BC,∴△BCE是等边三角形,∴∠CBE=60,∴∠ABE=∠ABC-∠CBE=90-60=30,即:α=30,如图4,同理,△BCE是等边三角形,∴∠ABE=∠ABC+∠CBE=90+60=150,即:α=150,故答案为:30或150.【点睛】本题属于相似形的综合题,主要考查了旋转的性质、正方形的性质、相似三角形的判定和性质以及勾股定理的综合运用,解决问题的关键是利用相似比表示线段之间的关系.24、(1)点C的坐标为(2,3+2);(2)OA=3;(3)OC的最大值为8,cos∠OAD=.【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=CD=2,DE=,再由∠OAD=30°知OD=AD=3,从而得出点C坐标;(2)先求出S△DCM=1,结合S四边形OMCD=知S△ODM=,S△OAD=9,设OA=x、OD=y,据此知x2+y2=31,xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=31求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得,据此求得MN=,ON=,AN=AM﹣MN=,再由OA=及cos∠OAD=可得答案.【详解】(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为(2,3+2);(2)∵M为AD的中点,∴DM=3,S△DCM=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全检查记录考核制度
- 配套工程师考核制度
- 图书馆员工考核制度
- 变压器检查考核制度
- 美甲店内员工考核制度
- 质量安全管理考核制度
- 校车驾驶员考核制度
- 教职工管理考核制度
- 大华代理商考核制度
- 社区中医人才考核制度
- (2025年)焊工(初级)考试题库及答案
- 北京市丰台区2025-2026学年上学期八年级期末英语试卷(原卷+解析)
- 终末期患者恶心呕吐的护理干预策略优化研究
- 2026 年民政局制式离婚协议书正式范本
- 田地种菜出租合同范本
- 2025-2030传统滋补品现代化转型与年轻化营销及投资价值研判
- 神经重症患者的气道管理策略
- 急性前壁再发心肌梗死的护理查房
- 谈恋爱被骗民事起诉状范本
- LY/T 2111-2013美国白蛾防治技术规程
- 2023人教版新教材高一英语必修二全册单词表(精编打印)
评论
0/150
提交评论