江苏省大丰区金丰路初级中学2022年数学九上期末复习检测试题含解析_第1页
江苏省大丰区金丰路初级中学2022年数学九上期末复习检测试题含解析_第2页
江苏省大丰区金丰路初级中学2022年数学九上期末复习检测试题含解析_第3页
江苏省大丰区金丰路初级中学2022年数学九上期末复习检测试题含解析_第4页
江苏省大丰区金丰路初级中学2022年数学九上期末复习检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,△ABC中,AB=25,BC=7,CA=1.则sinA的值为()A. B. C. D.2.一元二次方程的根为()A. B. C. D.3.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A.4- B.4- C.8- D.8-4.方差是刻画数据波动程度的量.对于一组数据,,,…,,可用如下算式计算方差:,其中“5”是这组数据的()A.最小值 B.平均数 C.中位数 D.众数5.如图,重庆欢乐谷的摩天轮是西南地区最高的摩天轮,号称“重庆之限”.摩天轮是一个圆形,直径AB垂直水平地面于点C,最低点B离地面的距离BC为1.6米.某天,妈妈带着洋洋来坐摩天轮,当她站在点D仰着头看见摩天轮的圆心时,仰角为37º,为了选择更佳角度为洋洋拍照,妈妈后退了49米到达点D’,当洋洋坐的桥厢F与圆心O在同一水平线时,他俯头看见妈妈的眼睛,此时俯角为42º,已知妈妈的眼睛到地面的距离为1.6米,妈妈两次所处的位置与摩天轮在同一平面上,则该摩天轮最高点A离地面的距离AC约是()(参考数据:sin37º≈0.60,tan37º≈0.75,sin42º≈0.67,tan42º≈0.90)A.118.8米 B.127.6米 C.134.4米 D.140.2米6.把两条宽度都为的纸条交叉重叠放在一起,且它们的交角为,则它们重叠部分(图中阴影部分)的面积为().A. B.C. D.7.将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为()A.y=﹣(x+1)2+1 B.y=﹣(x﹣1)2+3 C.y=﹣(x+1)2+5 D.y=﹣(x+3)2+38.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位9.方程变为的形式,正确的是()A. B.C. D.10.如图所示,抛物线的顶点为,与轴的交点在点和之间,以下结论:①;②;③;④.其中正确的是()A.①② B.③④ C.②③ D.①③二、填空题(每小题3分,共24分)11.圆锥侧面展开图的圆心角的度数为,母线长为5,该圆锥的底面半径为________.12.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为_____.13.关于的方程有两个不相等的实数根,那么的取值范围是__________.14.如图,在中,,若,则__________.15.二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论:①;②;③一元二次方程的解是,;④当时,,其中正确的结论有__________.16.已知方程的两实数根的平方和为,则k的值为____.17.如图,已知反比例函数y=与一次函数y=x+1的图象交于点A(a,﹣1)、B(1,b),则不等式≥x+1的解集为________.18.如图所示,点为矩形边上一点,点在边的延长线上,与交于点,若,,,则______.三、解答题(共66分)19.(10分)在推进城乡生活垃圾分类的行动中,某校数学兴趣小组为了了解居民掌握垃圾分类知识的情况,对两小区各600名居民进行测试,从中各随机抽取50名居民成绩进行整理得到部分信息:(信息一)小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)上图中,从左往右第四组成绩如下:75777779797980808182828383848484(信息三)两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差75.1___________7940%27775.1777645%211根据以上信息,回答下列问题:(1)求小区50名居民成绩的中位数;(2)请估计小区600名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析两小区参加测试的居民掌握垃圾分类知识的情况.20.(6分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.21.(6分)如图,在△ABC中,∠ACB=90º,∠ABC=45º,点O是AB的中点,过A、C两点向经过点O的直线作垂线,垂足分别为E、F.(1)如图①,求证:EF=AE+CF.(2)如图②,图③,线段EF、AE、CF之间又有怎样的数量关系?请直接写出你的猜想.22.(8分)如图,射线交一圆于点,,射线交该圆于点,,且.(1)判断与的数量关系.(不必证明)(2)利用尺规作图,分别作线段的垂直平分线与的平分线,两线交于点(保留作图痕迹,不写作法),求证:平分.23.(8分)如图,在四边形中,,点为的中点,.(1)求证:∽;(2)若,,求线段的长.24.(8分)(1)已知:如图1,为等边三角形,点为边上的一动点(点不与、重合),以为边作等边,连接.求证:①,②;(2)如图2,在中,,,点为上的一动点(点不与、重合),以为边作等腰,(顶点、、按逆时针方向排列),连接,类比题(1),请你猜想:①的度数;②线段、、之间的关系,并说明理由;(3)如图3,在(2)的条件下,若点在的延长线上运动,以为边作等腰,(顶点、、按逆时针方向排列),连接.①则题(2)的结论还成立吗?请直接写出,不需论证;②连结,若,,直接写出的长.25.(10分)如图,在中,,垂足为平分,交于点,交于点.(1)若,求的长;(2)过点作的垂线,垂足为,连接,试判断四边形的形状,并说明原因.26.(10分)已知关于的一元二次方程.(1)请判断是否可为此方程的根,说明理由.(2)是否存在实数,使得成立?若存在,请求出的值;若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据勾股定理逆定理推出∠C=90°,再根据进行计算即可;【详解】解:∵AB=25,BC=7,CA=1,又∵,∴,∴△ABC是直角三角形,∠C=90°,∴=;故选A.【点睛】本题主要考查了锐角三角函数的定义,勾股定理逆定理,掌握锐角三角函数的定义,勾股定理逆定理是解题的关键.2、A【解析】提公因式,用因式分解法解方程即可.【详解】一元二次方程,提公因式得:,∴或,解得:.故选:A.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键.3、B【解析】试题解析:连接AD,

∵BC是切线,点D是切点,

∴AD⊥BC,

∴∠EAF=2∠EPF=80°,

∴S扇形AEF=,

S△ABC=AD•BC=×2×4=4,

∴S阴影部分=S△ABC-S扇形AEF=4-π.4、B【分析】根据方差公式的定义即可求解.【详解】方差中“5”是这组数据的平均数.故选B.【点睛】此题主要考查平均数与方差的关系,解题的关键是熟知方差公式的性质.5、B【分析】连接EB,根据已知条件得到E′,E,B在同一条直线上,且E′B⊥AC,过F做FH⊥BE于H,则四边形BOFH是正方形,求得BH=FH=OB,设AO=OB=r,解直角三角形即可得到结论.【详解】解:连接EB,∵D′E′=DE=BC=1.6∴E′,E,B在同一条直线上,且E′B⊥AC,过F做FH⊥BE于H,则四边形BOFH是正方形,∴BH=FH=OB,设AO=OB=r,∴FH=BH=r,∵∠OEB=37°,∴tan37°=,∴BE=,∴EH=BD-BH=,∵EE′=DD′=49,∴E′H=49+,∵∠FE′H=42°,∴tan42°=,解得r≈63,∴AC=2×63+1.6=127.6米,故选:B.【点睛】本题考查了解直角三角形——仰角与俯角问题,正方形的判定和性质,正确的作出辅助线是解题的关键.6、A【分析】如图,过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,证明△ABE≌△ADF,从而证明四边形ABCD是菱形,再利用三角函数算出BC的长,最后根据菱形的面积公式算出重叠部分的面积即可.【详解】解:如图所示:过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,

∴∠AEB=∠AFD=90°,

∵AD∥CB,AB∥CD,

∴四边形ABCD是平行四边形,

∵纸条宽度都为1,

∴AE=AF=1,

在△ABE和△ADF中,

∴△ABE≌△ADF(AAS),

∴AB=AD,

∴四边形ABCD是菱形.

∴BC=AB,

∵=sinα,

∴BC=AB=,

∴重叠部分(图中阴影部分)的面积为:BC×AE=1×=.

故选:A.【点睛】本题考查菱形的判定与性质,以及三角函数的应用,关键是证明四边形ABCD是菱形,利用三角函数求出BC的长.7、B【解析】解:∵将抛物线y=﹣(x+1)2+1向右平移2个单位,∴新抛物线的表达式为y=﹣(x+1﹣2)2+1=﹣(x﹣1)2+1.故选B.8、B【解析】根据“左加右减,上加下减”的原则进行解答即可:∵y=x2,∴平移过程为:先向左平移2个单位,再向下平移3个单位.故选B.9、B【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2﹣2x=3,配方得:x2﹣2x+1=1,即(x﹣1)2=1.故选B.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法的步骤是解答本题的关键.10、B【分析】根据二次函数的图象可逐项判断求解即可.【详解】解:抛物线与x轴有两个交点,

∴△>0,

∴b2−4ac>0,故①错误;

由于对称轴为x=−1,

∴x=−3与x=1关于x=−1对称,

∵x=−3,y<0,

∴x=1时,y=a+b+c<0,故②错误;

∵对称轴为x=−=−1,

∴2a−b=0,故③正确;

∵顶点为B(−1,3),

∴y=a−b+c=3,

∴y=a−2a+c=3,

即c−a=3,故④正确,

故选B.【点睛】本题考查抛物线的图象与性质,解题的关键是熟练运用抛物线的图象与性质,本题属于中等题型.二、填空题(每小题3分,共24分)11、1【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解关于r的方程即可.【详解】设该圆锥的底面半径为r,根据题意得,解得.故答案为1.【点睛】本题考查圆锥的计算,解题的关键是知道圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12、【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=S扇形AOC=则图中阴影部分面积为S扇形AOC﹣S菱形ABCO=故答案为【点睛】本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积和扇形的面积,有一定的难度.13、且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案为:m<且m≠1.点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.14、6【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△BEG∽△FAG,∵,∴,∴,∵,∴,,∴.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.15、①②④【分析】①由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上得到c>0,由对称轴为,得到b<0,可以①进行分析判断;

②由对称轴为,得到2a=b,b-2a=0,可以②进行分析判断;

③对称轴为x=-1,图象过点(-4,0),得到图象与x轴另一个交点(2,0),可对③进行分析判断;

④抛物线开口向下,图象与x轴的交点为(-4,0),(2,0),即可对④进行判断.【详解】解:①∵抛物线的开口向下,

∴a<0,

∵与y轴的交点在y轴的正半轴上,

∴c>0,

∵对称轴为<0

∴b<0,

∴abc>0,故①正确;

②∵对称轴为,∴2a=b,

∴2a-b=0,故②正确;

③∵对称轴为x=-1,图象过点A(-4,0),

∴图象与x轴另一个交点(2,0),

∴关于x的一元二次方程ax2+bx+c=0的解为x=-4或x=2,故③错误;

④∵抛物线开口向下,图象与x轴的交点为(-4,0),(2,0),

∴当y>0时,-4<x<2,故④正确;∴其中正确的结论有:①②④;故答案为:①②④.【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.16、3【分析】根据一元二次方程根与系数的关系,得出和的值,然后将平方和变形为和的形式,代入便可求得k的值.【详解】∵,设方程的两个解为则,∵两实根的平方和为,即=∴解得:k=3或k=-11∵当k=-11时,一元二次方程的△<0,不符,需要舍去故答案为:3【点睛】本题考查根与系数的关系,注意在最后求解出2个值后,有一个值不符需要舍去.17、0〈x〈1或x〈-2【分析】利用一次函数图象和反比例函数图象性质数形结合解不等式:【详解】解:a+1=-1,a=-2,由函数图象与不等式的关系知,0<x<1或x<-2.故答案为0<x<1或x<-2.18、【分析】设,则,,与的交点为,首先根据同角的余角相等得到,可判定,利用对应边成比例推出,再根据平行线分线段成比例推出,进而求得,最后再次根据平行线分线段成比例得到.【详解】设,则,,与的交点为,,.∵,又∵,.,,∵DM∥CE.∴,.又∵AM∥CE.故答案为:.【点睛】本题考查了矩形的性质,相似三角形的判定和性质,以及平行线分线段成比例,利用相似三角形的性质求出DF是解题的关键.三、解答题(共66分)19、(1)76;(2)300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数【分析】(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值,所以中位数落在第四组,再根据信息二中的表格数据可得出结果;

(2)先求出A小区超过平均数的人数,即(16-1)+10=25(人),再根据小区600名居民成绩能超过平均数的人数=600×,即可得出结果;

(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【详解】解:(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值.而前三组的总人数为:4+8+12=24(人),所以中位数落在第四组,第25名的成绩为75分,第26名的成绩为77分,所以中位数为76,故答案为:76;(2)根据题意得,600×=300(人),答:A小区600名居民成绩能超过平均数的人数300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.(答案不唯一,合理即可;)【点睛】本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20、(1)详见解析;(2).【详解】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.试题解析:解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:.考点:列表法与树状图法.21、(1)见解析;(2)图②:EF=AE+CF图③:EF=AE-CF,见解析【分析】(1)连接OC,运用AAS证△AOE≌△OCF即可;(2)按(1)中的方法,连接OC,证明△AOE≌△OCF,即可得出结论【详解】(1)连接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF(2)如图②,连接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.22、(1)AC=AE;(2)图见解析,证明见解析【解析】(1)作OP⊥AM,OQ⊥AN于Q,连接AO,BO,DO.证△APO≌△AQO,由BC=DE,得CP=EQ后得证;

(2)同AC=AE得∠ECM=∠CEN,由CE=EF得∠FCE=∠FEC=∠MCE=∠CEN得证.【详解】证明:(1)作OP⊥AM于P,OQ⊥AN于Q,连接AO,BO,DO.∵,∴BC=DE,∴BP=DQ,又∵OB=OD,∴△OBP≌△ODQ,∴OP=OQ.∴BP=DQ=CP=EQ.直角三角形APO和AQO中,AO=AO,OP=OQ,∴△APO≌△AQO.∴AP=AQ.∵CP=EQ,∴AC=AE.(2)作图如图所示证明:∵AC=AE,∴,∴,由于AF是CE的垂直平分线,且CF平分,∴CF=EF.∴因此EF平分【点睛】本题考查了圆心角、弧、弦的关系,全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的性质,综合性比较强,熟练掌握性质定理是解题的关键.23、(1)见解析;(2)1.【分析】(1)由得出,从而有,等量代换之后有,再加上即可证明相似;(2)由相似三角形的性质可求出AE的长度,进而求出AB的长度,过点D作DF⊥BC于点F,则四边形ABFD是矩形,得出,从而求出CF的长度,最后利用勾股定理即可求解.【详解】(1)(2)过点D作DF⊥BC于点F∵点为的中点∵,,,DF⊥BC∴四边形ABFD是矩形【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及性质是解题的关键.24、(1)①见解析;②∠DCE=110°;(1)∠DCE=90°,BD1+CD1=DE1.证明见解析;(3)①(1)中的结论还成立,②AE=.【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出∠DCE=110°;

(1)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE1+CD1=DE1,即可得到BD1+CD1=DE1;

(3)①运用(1)中的方法得出BD1+CD1=DE1;②根据Rt△BCE中,BE=10,BC=6,求得进而得出CD=8-6=1,在Rt△DCE中,求得最后根据△ADE是等腰直角三角形,即可得出AE的长.【详解】(1)①如图1,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=110°;(1)∠DCE=90°,BD1+CD1=DE1.证明:如图1,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE1+CD1=DE1,∴BD1+CD1=DE1;(3)①(1)中的结论还成立.

理由:如图3,∵∠BAC=∠DAE=90°,

∴∠BAC+∠DAC=∠DAE+∠DAC,

即∠BAD=∠CAE,

在△ABD与△ACE中,∴△ABD≌△ACE(SAS),

∴∠ABC=∠ACE=45°,BD=CE,

∴∠ABC+∠ACB=∠ACE+∠ACB=90°,

∴∠BCE=90°=∠ECD,

∴Rt△DCE中,CE1+CD1=DE1,

∴BD1+CD1=DE1;②∵Rt△BCE中,BE=10,BC=6,∴BD=CE=8,

∴CD=8-6=1,

∴Rt△DCE中,∵△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论