2022年湖北省荆州市九年级数学第一学期期末联考模拟试题含解析_第1页
2022年湖北省荆州市九年级数学第一学期期末联考模拟试题含解析_第2页
2022年湖北省荆州市九年级数学第一学期期末联考模拟试题含解析_第3页
2022年湖北省荆州市九年级数学第一学期期末联考模拟试题含解析_第4页
2022年湖北省荆州市九年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若关于x的一元一次不等式组的解集是xa,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.62.一元二次方程x2﹣16=0的根是(

)A.x=2

B.x=4

C.x1=2,x2=﹣2

D.x1=4,x2=﹣43.一元二次方程的二次项系数、一次项系数分别是A.3, B.3,1 C.,1 D.3,64.如图所示,线段与交于点,下列条件中能判定的是()A.,,, B.,,,C.,,, D.,,,5.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A. B.C. D.6.如图,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是()A.(2,7) B.(3,7) C.(3,8) D.(4,8)7.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有()A.1个 B.2个 C.3个 D.4个8.反比例函数在第一象限的图象如图所示,则k的值可能是()A.3 B.5 C.6 D.89.对于抛物线,下列说法中错误的是()A.顶点坐标为B.对称轴是直线C.当时,随的增大减小D.抛物线开口向上10.用一个半径为15、圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.5 B.10 C. D.11.用配方法解一元二次方程时,下列变形正确的是().A. B. C. D.12.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A.16块,16块 B.8块,24块C.20块,12块 D.12块,20块二、填空题(每题4分,共24分)13.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.14.如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_____.15.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.16.如图,五边形是正五边形,若,则__________.17.如图,在Rt△ABC中,∠C=90°,CA=CB=1.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是______.18.再读教材:如图,钢球从斜面顶端静止开始沿斜面滚下,速度每秒增加1.5m/s,在这个问题中,距离=平均速度时间t,,其中是开始时的速度,是t秒时的速度.如果斜面的长是18m,钢球从斜面顶端滚到底端的时间为________s.三、解答题(共78分)19.(8分)已知抛物线与轴交于A,B两点(A在B左边),与轴交于C点,顶点为P,OC=2AO.(1)求与满足的关系式;(2)直线AD//BC,与抛物线交于另一点D,△ADP的面积为,求的值;(3)在(2)的条件下,过(1,-1)的直线与抛物线交于M、N两点,分别过M、N且与抛物线仅有一个公共点的两条直线交于点G,求OG长的最小值.20.(8分)如图,在四边形中,,,.分别以点,为圆心,大于长为半径作弧,两弧交于点,作直线交于点,交于点.请回答:(1)直线与线段的关系是_______________.(2)若,,求的长.21.(8分)一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.22.(10分)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).23.(10分)某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:每涨价1元,每星期要少卖出10件.(1)每件商品涨价多少元时,每星期该商品的利润是4000元?(2)每件商品的售价为多少元时,才能使每星期该商品的利润最大?最大利润是多少元?24.(10分)如图,点D是∠AOB的平分线OC上任意一点,过D作DE⊥OB于E,以DE为半径作⊙D,①判断⊙D与OA的位置关系,并证明你的结论.②通过上述证明,你还能得出哪些等量关系?25.(12分)在如图中,每个正方形有边长为1的小正方形组成:(1)观察图形,请填写下列表格:正方形边长

1

3

5

7

n(奇数)

黑色小正方形个数

正方形边长

2

4

6

8

n(偶数)

黑色小正方形个数

(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.26.某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,,,车杆与所成的,图1中、、三点共线,图2中的座板与地面保持平行.问变形前后两轴心的长度有没有发生变化?若不变,请写出的长度;若变化,请求出变化量?(参考数据:,,)

参考答案一、选择题(每题4分,共48分)1、B【解析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【详解】解:由不等式组,解得:∵解集是x≤a,∴a<5;由关于的分式方程得得2y-a+y-4=y-1又∵非负整数解,∴a≥-3,且a=-3,a=-1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.【点睛】本题综合考查了含参一元一次不等式,含参分式方程的问题,需要考虑的因素较多,属于易错题.2、D【解析】本题考查了一元二次方程的解法,移项后即可得出答案.【详解】解:16=x2,x=±1.故选:D【点睛】本题考查了一元二次方程的解法,熟悉掌握一元二次方程的解法是解决本题的关键.3、A【分析】根据一元二次方程的定义解答.【详解】3x2−6x+1=0的二次项系数是3,一次项系数是−6,常数项是1.故答案选A.【点睛】本题考查的知识点是一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的一般形式.4、C【解析】根据平行线分线段成比例的推论:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,逐项判断即可得答案.【详解】A.∵∴不能判定,故本选项不符合题意;B.无法判断,则不能判定,故本选项不符合题意;C.∵,,,∴∴故本选项符合题意;D.∵∴不能判定,故本选项不符合题意;故选C.【点睛】本题考查平行线分线段成比例的推论,熟练掌握此推论判定平行是解题的关键.5、A【解析】首先进行移项,然后把二次项系数化为1,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.【详解】∵ax2+bx+c=0,∴ax2+bx=−c,∴x2+x=−,∴x2+x+=−+,∴(x+)2=.故选A.6、A【解析】过C作CE⊥y轴于E,∵四边形ABCD是矩形,∴CD=AB,∠ADC=90°,∴∠ADO+∠CDE=∠CDE+∠DCE=90°,∴∠DCE=∠ADO,∴△CDE∽△ADO,∴,∵OD=2OA=6,AD:AB=3:1,∴OA=3,CD:AD=,∴CE=OD=2,DE=OA=1,∴OE=7,∴C(2,7),故选A.7、C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到∠DAE=∠ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号.【详解】解:∵C为的中点,即,∴OC⊥BE,BC=EC,选项②正确;设AE与CO交于F,∴∠BFO=90°,∵AB为圆O的直径,∴AE⊥BE,即∠BEA=90°,∴∠BFO=∠BEA,∴OC∥AE,选项①正确;∵AD为圆的切线,∴∠DAB=90°,即∠DAE+∠EAB=90°,∵∠EAB+∠ABE=90°,∴∠DAE=∠ABE,选项③正确;点E不一定为中点,故E不一定是中点,选项④错误,则结论成立的是①②③,故选:C.【点睛】此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键.8、B【分析】根据点(1,3)在反比例函数图象下方,点(3,2)在反比例函数图象上方可得出k的取值范围,即可得答案.【详解】∵点(1,3)在反比例函数图象下方,∴k>3,∵点(3,2)在反比例函数图象上方,∴<2,即k<6,∴3<k<6,故选:B.【点睛】本题考查了反比例函数的图象的性质,熟记k=xy是解题关键.9、C【分析】A.将抛物线一般式化为顶点式即可得出顶点坐标,由此可判断A选项是否正确;B.根据二次函数的对称轴公式即可得出对称轴,由此可判断B选项是否正确;C.由函数的开口方向和顶点坐标即可得出当时函数的增减性,由此可判断C选项是否正确;D.根据二次项系数a可判断开口方向,由此可判断D选项是否正确.【详解】,∴该抛物线的顶点坐标是,故选项A正确,对称轴是直线,故选项B正确,当时,随的增大而增大,故选项C错误,,抛物线的开口向上,故选项D正确,故选:C.【点睛】本题考查二次函数的性质.对于二次函数y=ax2+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小.在本题中能将二次函数一般式化为顶点式(或会用顶点坐标公式计算)得出顶点坐标是解决此题的关键.10、A【分析】根据弧长公式计算出弧长,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是10π,设圆锥的底面半径是r,列出方程求解.【详解】半径为15cm,圆心角为120°的扇形的弧长是=10π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是10π.

设圆锥的底面半径是r,

则得到2πr=10π,

解得:r=5,

这个圆锥的底面半径为5.故选择A.【点睛】本题考查弧长的计算,解题的关键是掌握弧长的计算公式.11、D【分析】根据配方法的原理,凑成完全平方式即可.【详解】解:,,,故选D.【点睛】本题主要考查配方法的掌握,关键在于一次项的系数等于2倍的二次项系数和常数项的乘积.12、D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x,y.则,解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D.二、填空题(每题4分,共24分)13、50°【解析】由平行线的性质可求得∠C/CA的度数,然后由旋转的性质得到AC=AC/,然后依据三角形的性质可知∠AC/C的度数,依据三角形的内角和定理可求得∠CAC/的度数,从而得到∠BAB/的度数.解:∵CC/∥AB,∴∠C/CA=∠CAB=65°,∵由旋转的性质可知:AC=AC/,∴∠ACC/=∠AC/C=65°.∴∠CAC/=180°-65°-65°=50°.∴∠BAB/=50°.14、0.1【分析】利用频数统计图可得,在试验中图钉针尖朝上的频率在0.1波动,然后利用频率估计概率可得图钉针尖朝上的概率.【详解】解:由统计图得,在试验中得到图钉针尖朝上的频率在0.1波动,所以可根据计图钉针尖朝上的概率为0.1.【点睛】本题考查了频数统计图用频率估计概率,解决本题的关键是正确理解题意,明确频率和概率之间的联系和区别.15、(,2).【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴点E坐标(,2).故答案为:(,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.16、72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.17、1【分析】三条弧与边AB所围成的阴影部分的面积=三角形的面积-三个小扇形的面积.【详解】解:阴影部分的面积为:1×1÷1---=1-.故答案为1-.【点睛】本题主要考查了扇形的面积计算,关键是理解阴影部分的面积=三角形的面积-三个小扇形的面积.18、【分析】根据题意求得钢球到达斜面低端的速度是1.5t.然后由“平均速度时间t”列出关系式,再把s=18代入函数关系式即可求得相应的t的值.【详解】依题意得s=×t=t2,把s=18代入,得18=t2,解得t=,或t=-(舍去).故答案为【点睛】本题考查了一元二次方程的应用,根据实际问题列出二次函数关系式.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.三、解答题(共78分)19、(1);(2);(3).【分析】(1)将抛物线解析式进行因式分解,可求出A点坐标,得到OA长度,再由C点坐标得到OC长度,然后利用OC=2AO建立等量关系即可得到关系式;(2)利用待定系数法求出直线BC的k,根据平行可知AD直线的斜率k与BC相等,可求出直线AD解析式,与抛物线联立可求D点坐标,过P作PE⊥x轴交AD于点E,求出PE即可表示△ADP的面积,从而建立方程求解;(3)为方便书写,可设抛物线解析式为:,设,,过点M的切线解析式为,两抛物线与切线联立,由可求k,得到M、N的坐标满足,将(1,-1)代入,推出G为直线上的一点,由垂线段最短,求出OG垂直于直线时的值即为最小值.【详解】解:(1)令y=0,,解得,令x=0,则∵,A在B左边∴A点坐标为(-m,0),B点坐标为(4m,0),C点坐标为(0,-4am2)∴AO=m,OC=4am2∵OC=2AO∴4am2=2m∴(2)∵∴C点坐标为(0,-2m)设BC直线为,代入B(4m,0),C(0,-2m)得,解得∵AD∥BC,∴设直线AD为,代入A(-m,0)得,,∴∴直线AD为直线AD与抛物线联立得,,解得或∴D点坐标为(5m,3m)又∵∴顶点P坐标为如图,过P作PE⊥x轴交AD于点E,则E点横坐标为,代入直线AD得∴PE=∴S△ADP=解得∵m>0∴∴.(3)在(2)的条件下,可设抛物线解析式为:,设,,过点M的切线解析式为,将抛物线与切线解析式联立得:,整理得,∵,∴方程可整理为∵只有一个交点,∴整理得即解得∴过M的切线为同理可得过N的切线为由此可知M、N的坐标满足将代入整理得将(1,-1)代入得在(2)的条件下,抛物线解析式为,即∴整理得∴G点坐标满足,即G为直线上的一点,当OG垂直于直线时,OG最小,如图所示,直线与x轴交点H(5,0),与y轴交点F(0,)∴OH=5,OF=,FH=∵∴∴OG的最小值为.【点睛】本题考查二次函数与一次函数的综合问题,难度很大,需要掌握二次函数与一次函数的图像与性质和较强的数形结合能力.20、(1)AE垂直平分BD;(2)【分析】(1)根据基本作图,可得AE垂直平分BD;(2)连接FB,由垂直平分线的性质得出FD=FB.再根据AAS证明△AOB≌△FOD,那么AB=FD=3,利用线段的和差关系求出FC,然后在直角△FBC中利用勾股定理求出BC的长.【详解】(1)根据作图方法可知:AE垂直平分BD;(2)如图,连接BF,∵AE垂直平分BD,∴OB=OD,∠AOB=∠FOD=90°,FD=FB,又∵AB∥CD,∴∠OAB=∠OFD,在△AOB和△FOD中,,∴△AOB≌△FOD(AAS),∴AB=FD=3,∴,在Rt△BCF中,.【点睛】本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与FD是解题的关键.21、【解析】试题分析:计算两个底面的菱形的面积加上侧面四个矩形的面积即可求得直四棱柱的表面积.试题解析:∵俯视图是菱形,∴可求得底面菱形边长为2.5,上、下底面积和为6×2=12,侧面积为2.5×4×8=80∴直棱柱的表面积为22、该台灯照亮水平面的宽度BC大约是67.1cm.【解析】试题分析:根据sin75°=,求出OC的长,根据tan10°=,再求出BC的长,即可求解.试题解析:在直角三角形ACO中,sin75°=≈0.97,解得OC≈18.8,在直角三角形BCO中,tan10°==≈,解得BC≈67.1.答:该台灯照亮水平面的宽度BC大约是67.1cm.考点:解直角三角形的应用.23、(1)20;(2)65,1.【分析】(1)每件涨价x元,则每件的利润是(60-40+x)元,所售件数是(300-10x)件,根据利润=每件的利润×所售的件数列方程,即可得到结论;

(2)设每件商品涨价m元,每星期该商品的利润为W,根据题意先列出函数解析式,再由函数的性质即可求得如何定价才能使利润最大.【详解】解:(1)设每件商品涨价x元,

根据题意得,(60-40+x)(300-10x)=4000,

解得:x1=20,x2=-10,(不合题意,舍去),

答:每件商品涨价20元时,每星期该商品的利润是4000元;

(2)设每件商品涨价m元,每星期该商品的利润为W,

∴W=(60-40+m)(300-10m)=-10m2+100m+6000=-10(m-5)2+1

∴当m=5时,W最大值.

∴60+5=65(元),

答:每件定价为65元时利润最大,最大利润为1元.【点睛】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解.24、(1)⊙D与OA的位置关系是相切,证明详见解析;(2)∠DOA=∠DOE,OE=OF.【分析】①首先过点D作DF⊥OA于F,由点D是∠AO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论