2022-2023学年福建省部分市县九年级数学第一学期期末监测试题含解析_第1页
2022-2023学年福建省部分市县九年级数学第一学期期末监测试题含解析_第2页
2022-2023学年福建省部分市县九年级数学第一学期期末监测试题含解析_第3页
2022-2023学年福建省部分市县九年级数学第一学期期末监测试题含解析_第4页
2022-2023学年福建省部分市县九年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列标志既是轴对称图形又是中心对称图形的是().A. B.C. D.2.已知的图象如图,则和的图象为()A. B. C. D.3.平面直角坐标系中,点P,Q在同一反比例函数图象上的是()A.P(-2,-3),Q(3,-2) B.P(2,-3),Q(3,2)C.P(2,3),Q(-4,-) D.P(-2,3),Q(-3,-2)4.若关于x的一元二次方程的两根是,则的值为()A. B. C. D.5.如图,抛物线的开口向上,与轴交点的横坐标分别为和3,则下列说法错误的是()A.对称轴是直线 B.方程的解是,C.当时, D.当,随的增大而增大6.﹣2019的倒数的相反数是()A.﹣2019 B. C. D.20197.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到期后自动续期,两期结束后共收回本息10926元设此款理财产品每期的平均收益率为x,则根据题意可得方程()A. B.C. D.8.若,则的值等于()A. B. C. D.9.若两个相似三角形的周长之比是1:4,那么这两个三角形的面积之比是()A.1:4 B.1:2 C.1:16 D.1:810.下列说法正确的是()A.“清明时节雨纷纷”是必然事件B.要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查C.做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55D.射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好二、填空题(每小题3分,共24分)11.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.12.若=2,则=_____.13.布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是________.14.如图,路灯距离地面,身高的小明站在距离路灯底部(点)的点处,则小明在路灯下的影子长为_____.15.已知点P是线段AB的黄金分割点,AP>PB.若AB=1.则AP=__(结果保留根号).16.如图,已知⊙P的半径为4,圆心P在抛物线y=x2﹣2x﹣3上运动,当⊙P与x轴相切时,则圆心P的坐标为_____.17.请你写出一个二次函数,其图象满足条件:①开口向下;②与轴的交点坐标为.此二次函数的解析式可以是______________18.关于的一元二次方程有两个不相等的实数根,则整数的最大值是______.三、解答题(共66分)19.(10分)已知二次函数(m为常数).(1)证明:不论m为何值,该函数的图像与x轴总有两个公共点;(2)当m的值改变时,该函数的图像与x轴两个公共点之间的距离是否改变?若不变,请求出距离;若改变,请说明理由.20.(6分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.21.(6分)如图,直线y=2x-6与反比例函数的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)求△OAB的面积.22.(8分)某企业生产并销售某种产品,整理出该商品在第()天的售价与函数关系如图所示,已知该商品的进价为每件30元,第天的销售量为件.(1)试求出售价与之间的函数关系是;(2)请求出该商品在销售过程中的最大利润;(3)在该商品销售过程中,试求出利润不低于3600元的的取值范围.23.(8分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=,且OC=4,求PB的长.24.(8分)如图,在O中,,CD⊥OA于点D,CE⊥OB于点E.(1)求证:;(2)若∠AOB=120°,OA=2,求四边形DOEC的面积.25.(10分)如图,点D、E分别在的边AB、AC上,若,,.求证:∽;已知,AD::3,,求AC的长.26.(10分)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形与中心对称图形的定义解答.【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是中心对称图形,不是轴对称图形;D、是轴对称图形,不是中心对称图形.故选:B.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、C【解析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线在二、四象限.【详解】根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线在二、四象限,∴C是正确的.故选C.【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.3、C【解析】根据反比函数的解析式y=(k≠0),可得k=xy,然后分别代入P、Q点的坐标,可得:-2×(-3)=6≠3×(-2),故不在同一反比例函数的图像上;2×(-3)=-6≠2×3,故不正确同一反比例函数的图像上;2×3=6=(-4)×(-),在同一反比函数的图像上;-2×3≠(-3)×(-2),故不正确同一反比例函数的图像上.故选C.点睛:此题主要考查了反比例函数的图像与性质,解题关键是求出函数的系数k,比较k的值是否相同来得出是否在同一函数的图像上.4、A【分析】利用一元二次方程的根与系数的关系即可求解.【详解】由题意可得:则故选:A.【点睛】本题考查了一元二次方程的根与系数的关系,对于一般形式,设其两个实数根分别为,则方程的根与系数的关系为:.5、D【解析】由图象与x轴的交点坐标即可判定下列说法是否正确.【详解】解:∵抛物线与x轴交点的横坐标分别为-1、3,

∴对称轴是直线x==1,方程ax2+bx+c=0的解是x1=-1,x2=3,故A、B正确;

∵当-1<x<3时,抛物线在x轴的下面,

∴y<0,故C正确,

∵抛物线y=ax2+bx+c(a≠0)的开口向上,

∴当x<1,y随x的增大而减小,故D错误;故选:D.【点睛】本题考查抛物线和x轴的交点坐标问题,解题的关键是正确的识别图象.6、C【分析】先求-2019的倒数,再求倒数的相反数即可;【详解】解:﹣2019的倒数是,的相反数为,故答案为:C.【点睛】本题考查倒数和相反数.熟练掌握倒数和相反数的求法是解题的关键.7、B【分析】根据题意,找出等量关系列出方程,即可得到答案.【详解】解:根据题意,设此款理财产品每期的平均收益率为x,则;故选择:B.【点睛】本题考查了一元二次方程的应用——增长率问题,解题的关键是找到等量关系,列出方程.8、B【分析】将整理成,即可求解.【详解】解:∵,∴,

故选:B.【点睛】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.9、C【分析】根据相似三角形的面积的比等于相似比的平方可得答案.【详解】解:∵相似三角形的周长之比是1:4,∴对应边之比为1:4,∴这两个三角形的面积之比是:1:16,故选C.【点睛】此题主要考查了相似三角形的性质,关键是掌握相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.10、C【分析】根据随机事件的概念、抽样调查的特点、方差的意义及概率公式分别判断可得.【详解】解:A、“清明时节雨纷纷”是随机事件,此选项错误;B、要了解路边行人边步行边低头看手机的情况,采取对在路边行走的学生随机发放问卷的方式进行调查不具代表性,此选项错误;C、做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55,正确;D、射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较稳定,此选项错误;二、填空题(每小题3分,共24分)11、【详解】设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以所围成的圆锥的高=考点:圆锥的计算.12、1【分析】根据=1,得出x=1y,再代入要求的式子进行计算即可.【详解】∵=1,∴x=1y,∴;故答案为:1.【点睛】本题主要考查了比例的基本性质.解答此题的关键是根据比例的基本性质求得x=1y.13、【解析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可.【详解】解:

红1红2红3白1白2红1--红1红2红1红3红1白1红1白2红2红2红1--红2红3红2白1红2白2红3红3红1红3红2--红3白1红3白2白1白1红1白1红2白1红3--白1白2白2白2红1白2红2白2红3白2白1--∵从布袋里摸出两个球的方法一共有20种,摸到两个红球的方法有6种,∴摸到两个红球的概率是.

故答案为:.【点睛】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.14、4【分析】,从而求得.【详解】解:,解得.【点睛】本题主要考查的相似三角形的应用.15、5﹣5【分析】根据黄金分割比的定义计算即可.【详解】根据黄金分割比,有故答案为:.【点睛】本题主要考查黄金分割比,掌握黄金分割比的定义是解题的关键.16、(1+2,4),(1﹣2,4),(1,﹣4)【分析】根据已知⊙P的半径为4和⊙P与x轴相切得出P点的纵坐标,进而得出其横坐标,即可得出答案.【详解】解:当半径为4的⊙P与x轴相切时,此时P点纵坐标为4或﹣4,∴当y=4时,4=x2﹣2x﹣3,解得:x1=1+2,x2=1﹣2,∴此时P点坐标为:(1+2,4),(1﹣2,4),当y=﹣4时,﹣4=x2﹣2x﹣3,解得:x1=x2=1,∴此时P点坐标为:(1,﹣4).综上所述:P点坐标为:(1+2,4),(1﹣2,4),(1,﹣4).故答案为:(1+2,4),(1﹣2,4),(1,﹣4).【点睛】此题是二次函数综合和切线的性质的综合题,解答时通过数形结合以得到P点纵坐标是解题关键。17、【分析】根据二次函数图像和性质得a0,c=3,即可设出解析式.【详解】解:根据题意可知a0,c=3,故二次函数解析式可以是【点睛】本题考查了二次函数的性质,属于简单题,熟悉概念是解题关键.18、1【分析】若一元二次方程有两不等实数根,则而且根的判别式△,建立关于的不等式,求出的取值范围.【详解】解:一元二次方程有两个不相等的实数根,△且,解得且,故整数的最大值为1,故答案为:1.【点睛】本题考查了一元二次方程的定义及根的判别式,特别要注意容易忽略方程是一元二次方程的前提即二次项系数不为2.三、解答题(共66分)19、(1)详见解析;(2)图像与轴两个公共点之间的距离为【分析】(1)证明判别式△>0即可证得;(2)将二次函数表达式化简成交点式,得到函数与x轴交点,通过交点可以证明函数的图像与x轴两个公共点之间的距离为定值即可.【详解】解:(1)证明:令,得∴此方程有两个不相等的实数根.∴不论为何值,该函数的图像与轴总有两个公共点.(2)当时,∴图像与轴两个公共点坐标为∴图像与轴两个公共点之间的距离为.【点睛】本题考查了二次函数与x轴的交点,可以利用判别式△的符号进行判断,还涉及到因式分解.20、(1)y;(2)yx+1.【解析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.【详解】(1)由题意得:k=xy=2×3=6,∴反比例函数的解析式为y;(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y的图象经过点B(a,b),∴b,∴AD=3,∴S△ABCBC•ADa(3)=6,解得a=6,∴b1,∴B(6,1),设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得,解得:,所以直线AB的解析式为yx+1.【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC,AD的长是解题的关键.21、(1)k=8,B(1,0);(2)1【分析】(1)利用待定系数法即可求出k的值,把y=0代入y=2x-6即可求出点B的坐标;(2)根据三角形的面积公式计算即可.【详解】解:(1)把A(4,2)代入,得2=,解得k=8,在y=2x-6中,当y=0时,2x-6=0,解得x=1,∴点B的坐标为(1,0);(2)连接OA,∵点B(1,0),∴OB=1,∵A(4,2),∴△OAB=×1×2=1.【点睛】本题考查了待定系数法求反比例函数解析式,一次函数与x轴的交点问题,以及三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、(1);(2)6050;(3).【分析】(1)当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50≤x≤90时,y=90;(2)根据W关于x的函数关系式,分段考虑其最值问题.当1≤x≤50时,结合二次函数的性质即可求出在此范围内W的最大值;当50≤x≤90时,根据一次函数的性质即可求出在此范围内W的最大值,两个最大值作比较即可得出结论;(3)分当时与当时利用二次函数与一次函数的性质进行得到的取值范围.【详解】(1)当时,设.∵图象过(0,40),(50,90),∴解得,∴,∴(2)当时,∵,∴当时,元;当时,∵,∴当时,元.∵,∴当时,元(3)当时,令,解得:,,∵∴当时,利润不低于3600元;当时,∵,即,解得,∴此时;综上,当时,利润不低于3600元.【点睛】本题考查了一次函数的应用、二次函数的性质以及待定系数法求一次函数解析式,解题的关键是:分段找出y关于x的函数关系式;根据销售利润=单件利润×销售数量找出W关于x的函数关系式;再利用二次函数的性质解决最值问题.23、(1)证明见解析(2)PB=3【分析】(1)通过证明△PAO≌△PBO可得结论;(2)根据tan∠BAD=,且OC=4,可求出AC=6,再证得△PAC∽△AOC,最后利用相似三角形的性质以及勾股定理求得答案.【详解】解:(1)连结OB,则OA=OB,如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO,∵PB为⊙O的切线,B为切点,∴PB⊥OB,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,∴AC=6,则BC=6,∴,在Rt△APO中,AC⊥OP,易得△PAC∽△AOC,∴,即AC2=OC•PC,∴PC=9,∴OP=PC+OC=13,在Rt△PBC中,由勾股定理,得PB=.【点睛】此题考查了切线的判定与性质、勾股定理、全等三角形的判定与性质、锐角三角函数、相似三角形的判定和性质,考查的知识点较多,关键是熟练掌握一些基本性质和定理,在解答综合题目时能灵活运用.24、(1)详见解析;(2)【分析】(1)连接OC,由AC=BC,可得∠AOC=∠BOC,又CD⊥OA,CE⊥OB,由角平分线定理可得CD=CE;(2)由∠AOB=120°,∠AOC=∠BOC,可得∠AOC=60°,又∠CDO=90°,得∠OCD=30°,可得,由勾股定理可得,可得;同理可得,进而求出.【详解】(1)证明:连接OC.∵AC=BC,∴∠AOC=∠BOC.∵CD⊥OA,CE⊥OB,∴CD=CE.(2)解:∵∠AOB=120°,∠AO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论