版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0),则下面的四个结论,其中正确的个数为()①2a+b=0②4a﹣2b+c<0③ac>0④当y>0时,﹣1<x<4A.1个 B.2个 C.3个 D.4个2.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4 B.4 C.3.4 D.2.43.二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是A. B. C. D.4.一元二次方程的根为()A. B. C. D.5.如图,▱ABCD的对角线相交于点O,且,过点O作交BC于点E,若的周长为10,则▱ABCD的周长为A.14 B.16 C.20 D.186.把两条宽度都为的纸条交叉重叠放在一起,且它们的交角为,则它们重叠部分(图中阴影部分)的面积为().A. B.C. D.7.关于的一元二次方程有两个相等的实数根,则的值为()A. B. C. D.8.在△ABC中,∠A、∠B都是锐角,且,则关于△ABC的形状的说法错误的是()A.它不是直角三角形 B.它是钝角三角形C.它是锐角三角形 D.它是等腰三角形9.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A. B. C. D.10.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15° B.30° C.45° D.60°11.一元二次方程x2=-3x的解是()A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-312.抛物线y=-(x-2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3) B.开口向上,顶点坐标(2,-3)C.开口向下,顶点坐标(-2,3) D.开口向上,顶点坐标(-2,-3)二、填空题(每题4分,共24分)13.在中,,,,则的长是__________.14.一张直角三角形纸片,,,,点为边上的任一点,沿过点的直线折叠,使直角顶点落在斜边上的点处,当是直角三角形时,则的长为_____.15.一元二次方程配方后得,则的值是__________.16.抛物线y=2(x﹣1)2﹣5的顶点坐标是_____.17.某游乐场新推出一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度,其中斜坡轨道BC的坡度为,BC=米,CD=8米,∠D=36°,(其中A,B,C,D均在同一平面内)则垂直升降电梯AB的高度约为__________米.(精确到0.1米,参考数据:)18.已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是_____三、解答题(共78分)19.(8分)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;线段OD的长为.②求∠BDC的度数;(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.20.(8分)已知关于的一元二次方程.(1)请判断是否可为此方程的根,说明理由.(2)是否存在实数,使得成立?若存在,请求出的值;若不存在,请说明理由.21.(8分)如图,在足够大的空地上有一段长为米的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中,已知矩形菜园的一边靠墙,另三边一共用了米木栏.(1)若米,所围成的矩形菜园的面积为平方米,求所利用旧墙的长;(2)若米,求矩形菜园面积的最大值.22.(10分)如图,已知方格纸中的每个小方格都是相同的正方形(边长为1),方格纸上有一个角∠AOB,A,O,B均为格点,请回答问题并只用无刻度直尺和铅笔,完成下列作图并简要说明画法:(1)OA=_____,(2)作出∠AOB的平分线并在其上标出一个点Q,使.23.(10分)如图所示,在平面直角坐标系中,抛物线与轴相交于点,点,与轴相交于点,与抛物线的对称轴相交于点.(1)求该抛物线的表达式,并直接写出点的坐标;(2)过点作交抛物线于点,求点的坐标;(3)在(2)的条件下,点在射线上,若与相似,求点的坐标.24.(10分)如图,在平面直角坐标系中,一次函数的图像与轴交于点.二次函数的图像经过点,与轴交于点,与一次函数的图像交于另一点.(1)求二次函数的表达式;(2)当时,直接写出的取值范围;(3)平移,使点的对应点落在二次函数第四象限的图像上,点的对应点落在直线上,求此时点的坐标.25.(12分)阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图,△ABC中,D为BC中点,且AD=AC,M为AD中点,连结CM并延长交AB于N.探究线段AN、MN、CN之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现线段AN、AB之间存在某种数量关系.”小强:“通过倍长不同的中线,可以得到不同的结论,但都是正确的,大家就大胆的探究吧.”小伟:“通过构造、证明相似三角形、全等三角形,就可以将问题解决.”......老师:“若其他条件不变,设AB=a,则可以用含a的式子表示出线段CM的长.”(1)探究线段AN、AB之间的数量关系,并证明;(2)探究线段AN、MN、CN之间的数量关系,并证明;(3)设AB=a,求线段CM的长(用含a的式子表示).26.已知,如图,是直角三角形斜边上的中线,交的延长线于点.求证:;若,垂足为点,且,求的值.
参考答案一、选择题(每题4分,共48分)1、B【分析】①函数对称轴为:x=﹣=1,解得:b=﹣2a,即可求解;②x=﹣2时,y=4a﹣2b+c<0,即可求解;③a<0,c>0,故ac<0,即可求解;④当y>0时,﹣1<x<3,即可求解.【详解】点B坐标为(﹣1,0),对称轴为x=1,则点A(3,0),①函数对称轴为:x=﹣=1,解得:b=﹣2a,故①正确,符合题意;②x=﹣2时,y=4a﹣2b+c<0,故②正确,符合题意;③a<0,c>0,故ac<0,故③错误,不符合题意;④当y>0时,﹣1<x<3,故④错误,不符合题意;故选:B.【点睛】本题考查二次函数图像问题,熟悉二次函数图形利用数形结合解题是本题关键.2、D【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,
∴,∵AB=1.5,BC=2,DE=1.8,∴,∴EF=2.4
故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.3、B【解析】试题分析:∵由二次函数的图象知,a<1,>1,∴b>1.∴由b>1知,反比例函数的图象在一、三象限,排除C、D;由知a<1,一次函数的图象与y国轴的交点在x轴下方,排除A.故选B.4、A【解析】提公因式,用因式分解法解方程即可.【详解】一元二次方程,提公因式得:,∴或,解得:.故选:A.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键.5、C【解析】由平行四边形的性质得出,,,再根据线段垂直平分线的性质得出,由的周长得出,即可求出平行四边形ABCD的周长.【详解】解:四边形ABCD是平行四边形,,,,,,的周长为10,,平行四边形ABCD的周长;故选:C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.6、A【分析】如图,过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,证明△ABE≌△ADF,从而证明四边形ABCD是菱形,再利用三角函数算出BC的长,最后根据菱形的面积公式算出重叠部分的面积即可.【详解】解:如图所示:过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,
∴∠AEB=∠AFD=90°,
∵AD∥CB,AB∥CD,
∴四边形ABCD是平行四边形,
∵纸条宽度都为1,
∴AE=AF=1,
在△ABE和△ADF中,
∴△ABE≌△ADF(AAS),
∴AB=AD,
∴四边形ABCD是菱形.
∴BC=AB,
∵=sinα,
∴BC=AB=,
∴重叠部分(图中阴影部分)的面积为:BC×AE=1×=.
故选:A.【点睛】本题考查菱形的判定与性质,以及三角函数的应用,关键是证明四边形ABCD是菱形,利用三角函数求出BC的长.7、A【分析】根据方程有两个相等的实数根列方程求解即可.【详解】由题意得∆=0,∴4-4k=0,解得k=1,故选:A.【点睛】此题考查了一元二次方程的根的情况求未知数的值,正确掌握一元二次方程的根的三种情况:方程有两个不相等的实数根时∆>0,方程有两个相等的实数根时∆=0,方程没有实数根时∆<0.8、C【解析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=30°.∴∠C=180°−∠A−∠B=180−30°−30°=120°.故选C.【点睛】本题主要考查特殊角三角函数值,熟悉掌握是关键.9、C【解析】正面的数字是偶数的情况数是2,总的情况数是5,用概率公式进行计算即可得.【详解】从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,正面的数字是偶数的概率为,故选C.【点睛】本题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.10、B【解析】解:∵关于x的一元二次方程有两个相等的实数根,∴△=,解得:sinα=,∵α为锐角,∴α=30°.故选B.11、D【解析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-1x,
x2+1x=0,
x(x+1)=0,
解得:x1=0,x2=-1.
故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.12、A【解析】根据抛物线的解析式,由a的值可得到开口方向,由顶点式可以得到顶点坐标.【详解】解:∵y=-(x-2)2+3∴a=-1<0,抛物线的开口向下,顶点坐标(2,3)故选A【点睛】本题考查二次函数的性质,解题的关键是根据二次函数的解析式可以得到开口方向、对称轴、顶点坐标等性质.二、填空题(每题4分,共24分)13、1【分析】根据∠A的余弦值列出比例式即可求出AC的长.【详解】解:在Rt△ABC中,,∴AC=故答案为1.【点睛】此题考查是已知一个角的余弦值,求直角三角形的边长,掌握余弦的定义是解决此题的关键.14、或【分析】依据沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,分两种情况讨论:∠DEB=90°或∠BDE=90°,分别依据勾股定理或者相似三角形的性质,即可得到CD的长【详解】分两种情况:①若,则,,连接,则,,,设,则,中,,解得,;②若,则,,四边形是正方形,,,,,设,则,,,,解得,,综上所述,的长为或,故答案为或.【点睛】此题考查折叠的性质,勾股定理,全等三角形的判定与性质,解题关键在于画出图形15、1【分析】将原方程进行配方,然后求解即可.【详解】解:∴-m+1=nm+n=1故答案为:1【点睛】本题考查配方法,掌握配方步骤正确计算是本题的解题关键.16、(1,﹣5)【分析】根据二次函数的顶点式即可求解.【详解】解:抛物线y=2(x﹣1)2﹣5的顶点坐标是(1,﹣5).故答案为(1,﹣5).【点睛】本题考查了顶点式对应的顶点坐标,顶点式的理解是解题的关键17、11.2【分析】延长AB和DC相交于点E,根据勾股定理,可得CE,BE的长,根据正切函数,可得AE的长,再根据线段的和差,可得答案.【详解】解:如图,延长AB和DC相交于点E,
由斜坡轨道BC的坡度为i=1:1,得
BE:CE=1:1.
设BE=x米,CE=1x米,
在Rt△BCE中,由勾股定理,得
BE1+CE1=BC1,
即x1+(1x)1=(11)1,
解得x=11,
即BE=11米,CE=12米,
∴DE=DC+CE=8+12=31(米),
由tan36°≈0.73,得tanD=≈0.73,
∴AE≈0.73×31=13.36(米).
∴AB=AE-BE=13.36-11=11.36≈11.2(米).
故答案为:11.2.【点睛】本题考查了解直角三角形的应用,作出辅助线构造直角三角形,利用勾股定理得出CE,BE的长度是解题关键.18、2.【解析】设另一个根为t,根据根与系数的关系得到3+t=4,然后解一次方程即可.【详解】设另一个根为t,根据题意得3+t=4,解得t=2,则方程的另一个根为2.故答案为2.【点睛】本题考查了根与系数的关系:若x2,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x2+x2=-,x2x2=.三、解答题(共78分)19、(1)①,4;②;(2),证明见解析.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;②由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD为等腰直角三角形,则OD=OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.【详解】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;∵旋转至,∴,,,∴为等边三角形∴,,故答案为:60°;4②在中,,,,∵∴∴为直角三角形,,∴(2)时,,理由如下:∵绕点顺时针旋转后得到,∴,,,∴为等腰直角三角形,∴∵当时,为直角三角形,,∴,即∴当满足时,.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判断与性质和勾股定理的逆定理.20、(1)不是此方程的根,理由见解析;(2)存在,或【分析】(1)将代入一元二次方程中,得到一个关于p的一元二次方程,然后用根的判别式验证关于p的一元二次方程是否存在实数根即可得出答案;(2)根据一元二次方程根与系数的关系可知,,然后代入到中,解一元二次方程,若有解,则存在这样的p,反之则不存在.【详解】(1)若是方程的根,则.,∴不是此方程的根.(2)存在实数,使得成立.∵,且.∴即.∴∴存在实数,当或时,成立【点睛】本题主要考查一元二次方程根与系数的关系,根的判别式,掌握一元二次方程根与系数的关系是解题的关键.21、(1)的长为;(2)当时,矩形菜园面积的最大值为.【分析】(1)设AB=xm,则BC=(100-2x)m,列方程求解即可;
(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【详解】(1)设AB=,则BC,根据题意得,解得,,当时,,不合题意舍去;当时,,答:AD的长为;(2)设AD=,∴则时,的最大值为;答:当时,矩形菜园面积的最大值为.【点睛】本题考查了一元二次方程和二次函数在实际问题中的应用,根据题意正确列式并明确二次函数的相关性质,是解题的关键.22、5【解析】(1)依据勾股定理即可得到OA的长;(2)取格点C,D,连接AB,CD,交于点P,作射线OP即为∠AOB的角平分线;取格点E,F,G,连接FE,交OP于Q,则点Q即为所求.【详解】解:(1)由勾股定理,可得AO==5,故答案为5;(2)如图,取格点C,D,连接AB,CD,交于点P,作射线OP即为∠AOB的角平分线;如图,取格点E,F,G,连接FE,交OP于Q,则点Q即为所求.理由:由勾股定理可得OG=2,由△FQG∽△EQO,可得=,∴OQ=OG=.【点睛】本题考查作图﹣复杂作图、角平分线的性质等知识,解题的关键是熟练掌握等腰三角形的性质的应用,角平分线的性质的应用,勾股定理以及相似三角形的性质.23、(1),点;(2)点;(3)或【解析】(1)设抛物线的表达式为,将A、B、C三点坐标代入表达式,解出a、b、c的值即可得到抛物线表达式,同理采用待定系数法求出直线BC解析式,即可求出与对称轴的交点坐标;(2)过点E作EH⊥AB,垂足为H.先证∠EAH=∠ACO,则tan∠EAH=tan∠ACO=,设EH=t,则AH=2t,从而可得到E(-2+2t,t),最后,将点E的坐标代入抛物线的解析式求解即可;(3)先证明,再根据与相似分两种情况讨论,建立方程求出AF,利用三角函数即可求出F点的坐标.【详解】(1)设抛物线的表达式为.把,和代入得,解得,抛物线的表达式,∴抛物线对称轴为设直线BC解析式为,把和代入得,解得∴直线BC解析式为当时,点.(2)如图,过点E作EH⊥AB,垂足为H.∵∠EAB+∠BAC=90°,∠BAC+∠ACO=90°,∴∠EAH=∠ACO.∴tan∠EAH=tan∠ACO=.设EH=t,则AH=2t,∴点E的坐标为(−2+2t,t).将(−2+2t,t)代入抛物线的解析式得:12(−2+2t)2−(−2+2t)−4=t,解得:t=或t=0(舍去)∴(3)如图所示,,.,,.由(2)中tan∠EAH=tan∠ACO可知,.和相似,分两种情况讨论:①,即,,∵tan∠EAB=∴sin∠EAB=∴F点的纵坐标=点.②,即,,同①可得F点纵坐标=横坐标=点.综合①②,点或.【点睛】本题考查二次函数的综合问题,需要熟练掌握待定系数法求函数解析式,熟练运用三角函数与相似三角形的性质,作出图形,数形结合是解题的关键.24、(1);(2)或;(3).【分析】(1)先求出A,B的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C点坐标,再根据平移的性质得到,设点,则,把D点代入二次函数即可求解.【详解】解:(1)令,得,∴.把
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度建筑领域廉洁建设合同3篇
- 2025有限公司股权赠与协议合同
- 二零二五年度差旅服务与企业文化传承合同3篇
- 二零二五年度古建筑修缮零星施工合同2篇
- 2025版高考政治二轮复习专题9文化的发展2热题快练含解析
- 2025版豪华别墅专用地板设计与安装合同3篇
- 感恩润心青春翱翔
- 思考激发勇气青春勇攀高峰
- 《流动人口讲义》课件
- 二零二五年度古建筑修复与保护专业分包合同范本3篇
- 奶茶督导述职报告
- 陕西省安康市石泉县2023-2024学年九年级上学期期末考试英语试题
- 2024立式圆筒形钢制焊接常压储罐在用检验技术规范
- 人教版高中生物必修一同步练习全套(含答案解析)
- 2023年非标自动化工程师年度总结及来年计划
- 2023-2024学年甘肃省嘉峪关市酒钢三中高三上数学期末学业质量监测试题含解析
- 水利机械施工方案
- 悬挑式脚手架验收记录表
- 电动叉车安全操作规程
- 静钻根植桩施工组织设计
- 工程精细化管理
评论
0/150
提交评论