2022年上海市建平西学校八年级数学第一学期期末综合测试模拟试题含解析_第1页
2022年上海市建平西学校八年级数学第一学期期末综合测试模拟试题含解析_第2页
2022年上海市建平西学校八年级数学第一学期期末综合测试模拟试题含解析_第3页
2022年上海市建平西学校八年级数学第一学期期末综合测试模拟试题含解析_第4页
2022年上海市建平西学校八年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.能说明命题“”是假命题的一个反例是()A.a=-2 B.a=0 C.a=1 D.a=22.如图,于,于,若,平分,则下列结论:①;②;③;④,正确的有()个A. B. C. D.3.已知点都在函数的图象上,下列对于的关系判断正确的是()A. B. C. D.4.函数,则的值为()A.0 B.2 C.4 D.85.一个三角形的两边长分别是和,则第三边的长可能是()A. B. C. D.6.计算的平方根为()A. B. C.4 D.7.下列命题的逆命题为假命题的是()A.如果一元二次方程没有实数根,那么.B.线段垂直平分线上任意一点到这条线段两个端点的距离相等.C.如果两个数相等,那么它们的平方相等.D.直角三角形两条直角边的平方和等于斜边的平方.8.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为()A.45 B.48 C.63 D.649.下列计算正确的是()A. B.C. D.10.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)二、填空题(每小题3分,共24分)11.如图,等腰△ABC中,AB=AC,∠BAC=120°,AE⊥AC,DE垂直平分AB于D,若DE=2,则EC=_____.12.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有_____米.13.按如图的运算程序,请写出一组能使输出结果为3的、的值:__________.14.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于_______.15.若一次函数()与一次函数的图象关于轴对称,且交点在轴上.则这个函数的表达式为_______16.若分式值为负,则x的取值范围是___________________17.分解因式6xy2-9x2y-y3=_____________.18.已知(a-2)2+=0,则3a-2b的值是______.三、解答题(共66分)19.(10分)如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?(说明:在(3)中,将视你解答方法的创新程度,给予1~4分的加分)20.(6分)(1)如图①,直线经过正三角形的顶点,在直线上取两点、,使得,,求证:.(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图②的位置,并使,,通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明.21.(6分)如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,与是否可能全等?若能,求出全等时点Q的运动速度和时间;若不能,请说明理由.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?22.(8分)如图是一张纸片,,,,现将直角边沿的角平分线折叠,使它落在斜边上,且与重合.(1)求的长;(2)求的长.23.(8分)因式分解:(1);(2)24.(8分)如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.25.(10分)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线DE经过点C,过A作AD⊥DE于点D,过B作BE⊥DE于点E,则△BEC≌△CDA,我们称这种全等模型为“K型全等”.(不需要证明)(模型应用)若一次函数y=kx+4(k≠0)的图像与x轴、y轴分别交于A、B两点.(1)如图2,当k=-1时,若点B到经过原点的直线l的距离BE的长为3,求点A到直线l的距离AD的长;(2)如图3,当k=-时,点M在第一象限内,若△ABM是等腰直角三角形,求点M的坐标;(3)当k的取值变化时,点A随之在x轴上运动,将线段BA绕点B逆时针旋转90°得到BQ,连接OQ,求OQ长的最小值.26.(10分)解不等式组并写出不等式组的整数解.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据题意:选取的a的值不满足,据此逐项验证即得答案.【详解】解:A、当a=﹣2时,,能说明命题“”是假命题,故本选项符合题意;B、当a=0时,,不能说明命题“”是假命题,故本选项不符合题意;C、当a=1时,,不能说明命题“”是假命题,故本选项不符合题意;D、当a=2时,,不能说明命题“”是假命题,故本选项不符合题意;故选:A.【点睛】本题考查了算术平方根的性质和举反例说明一个命题是假命题,正确理解题意、会进行验证是关键.2、D【分析】根据角平分线的性质即可判断①;根据HL可得Rt△DBE≌Rt△DCF,进而可得∠DBE=∠C,BE=CF,于是可判断②;根据平角的定义和等量代换即可判断③;根据HL可得Rt△ADE≌Rt△ADF,于是可得AE=AF,进一步根据线段的和差关系即可判断④,从而可得答案.【详解】解:∵平分,于,于,∴,DE=DF,故①正确;在Rt△DBE和Rt△DCF中,∵DE=DF,,∴Rt△DBE≌Rt△DCF(HL),∴∠DBE=∠C,BE=CF,故②正确;∵,∴,故③正确;在Rt△ADE和Rt△ADF中,∵DE=DF,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴,故④正确;综上,正确的结论是:①②③④,有4个.故选:D.【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质等知识,属于常考题型,熟练掌握上述知识是解题的关键.3、A【分析】根据题意将A,B两点代入一次函数解析式化简得到的关系式即可得解.【详解】将点代入得:,解得:,则,解得:,故选:A.【点睛】本题主要考查了一次函数图像上点坐标的求解及整式的化简,熟练掌握一次函数点的求法及整式的计算法则是解决本题的关键.4、C【分析】根据二次根式有意义的条件可得出x,y的值,再代入中即可求解.【详解】解:∵,,∴,故x=2,∴y=2,∴故答案为:C.【点睛】本题考查了二次根式有意义的条件,解题的关键是得出x,y的值.5、C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x,由三角形三条边的关系得1-2<x<1+2,∴2<x<6,∴第三边的长可能是1.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.6、B【解析】先根据算术平方根的定义求出的值,然后再根据平方根的定义即可求出结果.【详解】∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2,故选B.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】、逆命题为:如果一元一次方程中,那么没有实数根,正确,是真命题;、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.故选:.【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.8、C【分析】由中央小正方形的边长为1厘米,设这7个正方形中最大的一个边长为x厘米,其余几个边长分别是x-1、x-2、x-3,根据长方形中几个正方形的排列情况,列方程求出最大正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.【详解】因为小正方形边长为1厘米,设这7个正方形中最大的一个边长为x厘米,因为图中最小正方形边长是1厘米,所以其余的正方形边长分别为x−1,x−2,x−3,3(x-3)-1=x解得:x=5;所以长方形的长为x+x−1=5+5-1=9,宽为x-1+x−2=5-1+5-2=7长方形的面积为9×7=63(平方厘米);故选:C【点睛】本题考查了对拼组图形面积的计算能力,利用了正方向的性质和长方形面积的计算公式.9、C【解析】直接利用同底数幂的乘除法运算法则、合并同类项法则分别化简求出答案.【详解】A.,故此项错误;B.,故此项错误;C.,故此项正确;D.,故此项错误.故选:C【点睛】本题是考查计算能力,主要涉及同底数幂的乘除法运算法则、合并同类项法则,掌握这些运算法则是解题的关键.10、C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.二、填空题(每小题3分,共24分)11、1【分析】由DE垂直平分AB,可得AE=BE,由△ABC中,AB=AC,∠BAC=120°,可求得∠B=∠C=∠EAB=30°,继而求得AE的长,继而求得答案.【详解】∵△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵DE垂直平分AB,∴AE=BE,∴∠EAB=∠B=30°,∴AE=BE=2DE=2×2=4,∴∠EAC=∠BAC-∠BAE=90°,∴CE=2AE=1,故答案为1.【点睛】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12、1【分析】图中为一个直角三角形,根据勾股定理两个直角边的平方和等于斜边的平方,求出斜边的长,进而可求出旗杆折断之前的长度.【详解】由题意知折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=15米,所以旗杆折断之前大致有15+9=1米,故答案为1.【点睛】本题考查的是勾股定理的应用,找出可以运用勾股定理的直角三角形是关键.13、,.【分析】根据运算程序列出方程,取方程的一组正整数解即可.【详解】根据题意得:,当时,.故答案为:,.【点睛】此题考查了解二元一次方程,弄清题中的运算程序是解本题的关键.14、1.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得.故答案是:1.15、【分析】先求出这两个函数的交点,然后根据一次函数y=kx+b(k≠0)与函数的图象关于x轴对称,解答即可.【详解】解:∵两函数图象交于x轴,∴0=,解得x=2,∴0=2k+b,∵y=kx+b与关于轴对称,∴b=1,∴k=,∴,故答案为:.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.16、x>5【解析】先根据非负数的性质,判断出分母必是正数,故若使分式的值是负值,则分子的值为负数即可,从而列出不等式,求此不等式的解集即可.【详解】∵∴∵分式值为负∴5-x<0即x>5故答案为:x>5【点睛】本题考查不等式的解法和分式值的正负条件,解不等式时要根据不等式的基本性质.17、-y(3x-y)2【解析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.18、1【分析】根据非负数的性质列式求出、b的值,然后代入代数式进行计算即可得解.【详解】∵(-2)2+=2,∴-2=2,b+2=2,解得:=2,b=-2,则3-2b=3×2-2×(-2)=6+4=1,故答案为:1.【点睛】本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.三、解答题(共66分)19、(1)详见解析;(2)y=2x+2(0≤x≤16),当x=0时,y最小=2,当x=16时,y最大=1;(3)当x=32时,y最小=2;当x=16时,y最大=1.【解析】试题分析:(1)如图1,分别作出点A1、B1、C1关于直线QN的对称点A2、B2、C2,在顺次连接这三点即可得到所求三角形;(2)如图2,当△ABC以每秒1个单位长的速度向下平移x秒时,则有:MA=x,MB=x+4,MQ=20,由题意可得:y=S梯形QMBC﹣S△AMQ﹣S△ABC,由此就可得到y与x之间的函数关系式,结合x的取值范围是即可求得y的最大值和最小值;(3)如图2,可用如下两种方法解答本问:方法一:当△ABC继续以每秒1个单位长的速度向右平移时,此时16≤x≤32,PB=20﹣(x﹣16)=36﹣x,PC=PB﹣4=32﹣x,由y=S梯形BAQP﹣S△CPQ﹣S△ABC即可列出y与x之间的函数关系式,结合x的取值范围即可求得y的最大值和最小值;方法二:在△ABC自左向右平移的过程中,△QAC在每一时刻的位置都对应着(2)中△QAC某一时刻的位置,使得这样的两个三角形关于直线QN成轴对称.因此,根据轴对称的性质,只需考查△ABC在自上向下平移过程中△QAC面积的变化情况,便可以知道△ABC在自左向右平移过程中△QAC面积的变化情况.试题解析:(1)如图1,△A2B2C2是△A1B1C1关于直线QN成轴对称的图形(2)当△ABC以每秒1个单位长的速度向下平移x秒时(如图2),则有:MA=x,MB=x+4,MQ=20,y=S梯形QMBC﹣S△AMQ﹣S△ABC=(4+20)(x+4)﹣×20x﹣×4×4=2x+2(0≤x≤16).由一次函数的性质可知:当x=0时,y取得最小值,且y最小=2,当x=16时,y取得最大值,且y最大=2×16+2=1;(3)解法一:当△ABC继续以每秒1个单位长的速度向右平移时,此时16≤x≤32,PB=20﹣(x﹣16)=36﹣x,PC=PB﹣4=32﹣x,∴y=S梯形BAQP﹣S△CPQ﹣S△ABC=(4+20)(36﹣x)﹣×20×(32﹣x)﹣×4×4=﹣2x+104(16≤x≤32).由一次函数的性质可知:当x=32时,y取得最小值,且y最小=﹣2×32+104=2;当x=16时,y取得最大值,且y最大=﹣2×16+104=1.解法二:在△ABC自左向右平移的过程中,△QAC在每一时刻的位置都对应着(2)中△QAC某一时刻的位置,使得这样的两个三角形关于直线QN成轴对称.因此,根据轴对称的性质,只需考查△ABC在自上至下平移过程中△QAC面积的变化情况,便可以知道△ABC在自左向右平移过程中△QAC面积的变化情况.当x=16时,y取得最大值,且y最大=1,当x=32时,y取得最小值,且y最小=2.20、(1)证明见解析;(2),理由见解析.【分析】(1)通过等边三角形的性质和等量代换得出,利用AAS可证≌,则有,,则结论可证;(2)通过等边三角形的性质和等量代换得出,利用AAS可证≌,则有,,则可以得出;【详解】(1)∵在正三角形中,,∴又∵∴在和中,∴≌()∴,∴(2)猜想:证明:∵在正三角形中,∴∵∴∴在和中∴≌()∴,∴【点睛】本题主要考查全等三角形的判定及性质,掌握全等三角形的判定及性质是解题的关键.21、(1)①,理由见解析;②秒,厘米/秒;(2)经过秒,点与点第一次在边上相遇【分析】(1)①根据“路程=速度×时间”可得,然后证出,根据等边对等角证出,最后利用SAS即可证出结论;②根据题意可得,若与全等,则,根据“路程÷速度=时间”计算出点P的运动时间,即为点Q运动的时间,然后即可求出点Q的速度;(2)设经过秒后点与点第一次相遇,根据题意可得点与点第一次相遇时,点Q比点P多走AB+AC=20厘米,列出方程,即可求出相遇时间,从而求出点P运动的路程,从而判断出结论.【详解】解:(1)①∵秒,∴厘米,∵厘米,点为的中点,∴厘米.又∵厘米,∴厘米,∴.又∵,∴,在△BPD和△CQP中∴.②∵,∴,又∵与全等,,则,∴点,点运动的时间秒,∴厘米/秒.(2)设经过秒后点与点第一次相遇,∵∴点与点第一次相遇时,点Q比点P多走AB+AC=20厘米∴,解得秒.∴点共运动了厘米.∵,∴点、点在边上相遇,∴经过秒,点与点第一次在边上相遇.【点睛】此题考查的是全等三角形的判定及性质和动点问题,掌握全等三角形的判定及性质和行程问题公式是解决此题的关键.22、(1)10;(2).【分析】(1)利用勾股定理即可得解;(2)首先由折叠的性质得出,,,然后利用勾股定理构建一元二次方程,即可得解.【详解】(1)在中,;(2)由图形折叠的性质可得,,,∴.设,则.在中,,即,解得,即.【点睛】此题主要考查勾股定理的运用以及折叠的性质,解题关键是利用勾股定理构建方程,列出关系式.23、(1);(2)【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解因式即可.【详解】解:(1)(2)【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24、(1)见解析;(2)见解析【分析】(1)根据题意作AB的垂直平分线;(2)根据题意求出∠BDC=∠C=72°,即可证明.【详解】(1)解:如图,点D为所作,;(2)证明:∵AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°,∵DA=DB,∴∠ABD=∠A=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴△BCD是等腰三角形.【点睛】此题主要考查等腰三角形的性质,垂直平分线的尺规作图方法,以及垂直平分线的性质,解题的关键是熟知等腰三角形的判定与性质.25、(1);(2)点M的坐标为(7,3)或(1,7)或(,);(3)OQ的最小值为1.【分析】(1)先求出A、B两点的坐标,根据勾股定理即可求出OE的长,然后利用AAS证出△ADO≌△OEB,即可求出AD的长;(2)先求出A、B两点的坐标,根据等腰直角三角形的直角顶点分类讨论,分别画出对应的图形,利用AAS证出对应的全等三角形即可分别求出点M的坐标;(3)根据k的取值范围分类讨论,分别画出对应的图形,设点A的坐标为(x,0),证出对应的全等三角形,利用勾股定理得出OQ2与x的函数关系式,利用平方的非负性从而求出OQ的最值.【详解】解:(1)根据题意可知:直线AB的解析式为y=-x+1当x=0时,y=1;当y=0时,x=1∴点A的坐标为(1,0)点B的坐标为(0,1)∴OA=BO=1根据勾股定理:OE=∵∠ADO=∠OEB=∠AOB=90°∴∠AOD+∠OAD=90°,∠AOD+∠BOE=90°∴∠OAD=∠BOE在△ADO和△OEB中∴△ADO≌△OEB∴AD=OE=(2)由题意可知:直线AB的解析式为y=x+1当x=0时,y=1;当y=0时,x=3∴点A的坐标为(3,0)点B的坐标为(0,1)∴OA=3,BO=1①当△ABM是以∠BAM为直角顶点的等腰直角三角形时,AM=AB,过点M作MN⊥x轴于N∵∠MNA=∠AOB=∠BAM=90°∴∠MAN+∠AMN=90°,∠MAN+∠BAO=90°∴∠AMN=∠BAO在△AMN和△BAO中∴△AMN≌△BAO∴AN=BO=1,MN=AO=3∴ON=OA+AN=7∴此时点M的坐标为(7,3);②当△ABM是以∠ABM为直角顶点的等腰直角三角形时,BM=AB,过点M作MN⊥y轴于N∵∠MNB=∠BOA=∠ABM=90°∴∠MBN+∠BMN=90°,∠MBN+∠ABO=90°∴∠BMN=∠ABO在△BMN和△ABO中∴△BMN≌△ABO∴BN=AO=3,MN=BO=1∴ON=OB+BN=7∴此时点M的坐标为(1,7);③当△ABM是以∠AMB为直角顶点的等腰直角三角形时,MA=MB,过点M作MN⊥x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论