版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用树状图或表格求概率第三章概率的进一步认识导入新课讲授新课当堂练习课堂小结第2课时用树状图或表格求概率第三章概率的进一步认识导入新课讲授新课1.能判断某事件的每个结果出现的可能性是否相等;2.能将不等可能随机事件转化为等可能随机事件,求其发生的概率.(重点、难点)学习目标1.能判断某事件的每个结果出现的可能性是否相等;学习目标
小颖为学校联欢会设计一个“配紫色”游戏:如下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.问题:利用画树状图或列表的方法表示游戏所以可能出现的结果.A盘红白B盘黄蓝绿导入新课小颖为学校联欢会设计一个“配紫色”游戏:如下树状图画树状图如图所示:开始白色红色黄色绿色A盘B盘蓝色黄色绿色蓝色列表法黄色蓝色绿色白色(白,黄)(白,蓝)(白,绿)红色(红,黄)(红,蓝)(红,绿)B盘A盘树状图画树状图如图所示:开始白色红色黄色绿色A盘B盘蓝色黄色用表格或树状图求“配紫色”概率一例1:若将A,B盘进行以下修改.其他条件不变,请求出获胜概率?A盘红蓝B盘蓝红问题1:下面是小颖和小亮的解答过程,两人结果都是,你认为谁对?120°讲授新课用表格或树状图求“配紫色”概率一例1:若将A,B盘进行以下修小颖制作下图:开始蓝色红色蓝色红色A盘B盘蓝色红色配成紫色的情况有:(红,蓝),(蓝,红)2种.总共有4种结果.所以配成紫色的概率P=.小颖制作下图:开始蓝色红色蓝色红色A盘B盘蓝色红色配成紫色的小亮制作下表:小亮将A盘中红色区域等分成2份,分别记“红1”,“红2”红色蓝色蓝色(蓝,红)(蓝,红)红1色(红1,红)(红1,蓝)红2色(红2,红)(红2,蓝)B盘A盘红蓝120°红1红2配成紫色的情况有:(红1,蓝),(红2,蓝),(蓝,红)3种.所以配成紫色的概率P=
.小亮制作下表:小亮将A盘中红色区域等分成2份,分别记“红1”小颖的做法不正确.因为右边的转盘中红色部分和蓝色部分的面积不相同,因而指针落在这两个区域的可能性不同.小亮的做法是解决这类问题的一种常用方法.问题2:用树状图和列表的方法求概率时应注意些什么?
用树状图和列表的方法求概率时应注意各种结果出现的可能性务必相同.红蓝120°红1红2小颖的做法不正确.因为右边的转盘中红色部分和蓝色部分112例2:一个盒子中装有两个红球,两个白球和一个蓝球,这些球出颜色外都相同了.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球得颜色能配成紫色的概率.2解:现将两个红球分别记作“红1”“红2”,两个白球分别记作“白1”“白2”,然后列表如下.112例2:一个盒子中装有两个红球,两个白球和一个蓝球,这些红1红2白1白2蓝红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)(红1,蓝)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)(红2,蓝)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)(白1,蓝)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)(白2,蓝)蓝(蓝,红1)(蓝,红2)(蓝,白1)(蓝,白2)(蓝,蓝)第二次第一次总共有25种结果,每种结果出现的可能性相同,而两次摸到的球的颜色能配成紫色的结果有4种即(红1,蓝),(红2,蓝),(蓝,红1),(蓝,红2),P(配成紫色)=红1红2白1白2蓝红1(红1,红1)(红1,红2)(红1,白同步练习如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.12123同步练习如图,袋中装有两个完全相同的球,分别标总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1/6.解:每次游戏时,所有可能出现的结果如下:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)转盘摸球问题3:用树状图怎么解答该题?总共有6种结果,每种结果出现的可能性相同,而所摸例3:王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.(1)用画树状图的方法表示三次抛掷硬币的所有结果;(2)这个游戏规则对两个球队是否公平?为什么?例3:王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到解:(1)根据题意画出树状图,如图.开始正反正反第一次第二次正反第三次正反正反正反正反(2)这个游戏规则对两个球队公平.理由如下:两次正面朝上一次正面朝下有3种结果:正正反,正反正,反正正;两次反面朝上一次反面朝下有3种结果:正反反,反正反,反反正.所以P(王铮去足球队)=P(王铮去篮球队)=3/8.解:(1)根据题意画出树状图,如图.开始正反正反第一次第二次概率与游戏的综合应用配紫色判断游戏公平性课堂小结配红色+蓝色=紫色判断游戏参与者获胜的概率是否相同概率与游戏的综合应用配紫色判断游戏公平性课堂小结配红色+蓝色归纳总结、拓展提升通过这节课的学习,你有哪些收获?归纳总结、拓展提升通过这节课的学习,你有哪些收获?
上完这节课,你收获了什么?有什么样的感悟?与同学相互交流讨论。课后研讨上完这节课,你收获了什么?有什么样的感悟?与同学相互
大千世界,充满着无数的奥秘,希望同学们能遇事独立,积极探索钻研,解决更多的难题。结束语大千世界,充满着无数的奥秘,希望同学们能遇事独立,积课后作业1.
从课后习题中选取;2.
完成练习册本课时的习题.课后作业1.从课后习题中选取;演示完毕感谢聆听演示完毕感谢聆听20用树状图或表格求概率第三章概率的进一步认识导入新课讲授新课当堂练习课堂小结第2课时用树状图或表格求概率第三章概率的进一步认识导入新课讲授新课1.能判断某事件的每个结果出现的可能性是否相等;2.能将不等可能随机事件转化为等可能随机事件,求其发生的概率.(重点、难点)学习目标1.能判断某事件的每个结果出现的可能性是否相等;学习目标
小颖为学校联欢会设计一个“配紫色”游戏:如下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.问题:利用画树状图或列表的方法表示游戏所以可能出现的结果.A盘红白B盘黄蓝绿导入新课小颖为学校联欢会设计一个“配紫色”游戏:如下树状图画树状图如图所示:开始白色红色黄色绿色A盘B盘蓝色黄色绿色蓝色列表法黄色蓝色绿色白色(白,黄)(白,蓝)(白,绿)红色(红,黄)(红,蓝)(红,绿)B盘A盘树状图画树状图如图所示:开始白色红色黄色绿色A盘B盘蓝色黄色用表格或树状图求“配紫色”概率一例1:若将A,B盘进行以下修改.其他条件不变,请求出获胜概率?A盘红蓝B盘蓝红问题1:下面是小颖和小亮的解答过程,两人结果都是,你认为谁对?120°讲授新课用表格或树状图求“配紫色”概率一例1:若将A,B盘进行以下修小颖制作下图:开始蓝色红色蓝色红色A盘B盘蓝色红色配成紫色的情况有:(红,蓝),(蓝,红)2种.总共有4种结果.所以配成紫色的概率P=.小颖制作下图:开始蓝色红色蓝色红色A盘B盘蓝色红色配成紫色的小亮制作下表:小亮将A盘中红色区域等分成2份,分别记“红1”,“红2”红色蓝色蓝色(蓝,红)(蓝,红)红1色(红1,红)(红1,蓝)红2色(红2,红)(红2,蓝)B盘A盘红蓝120°红1红2配成紫色的情况有:(红1,蓝),(红2,蓝),(蓝,红)3种.所以配成紫色的概率P=
.小亮制作下表:小亮将A盘中红色区域等分成2份,分别记“红1”小颖的做法不正确.因为右边的转盘中红色部分和蓝色部分的面积不相同,因而指针落在这两个区域的可能性不同.小亮的做法是解决这类问题的一种常用方法.问题2:用树状图和列表的方法求概率时应注意些什么?
用树状图和列表的方法求概率时应注意各种结果出现的可能性务必相同.红蓝120°红1红2小颖的做法不正确.因为右边的转盘中红色部分和蓝色部分112例2:一个盒子中装有两个红球,两个白球和一个蓝球,这些球出颜色外都相同了.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球得颜色能配成紫色的概率.2解:现将两个红球分别记作“红1”“红2”,两个白球分别记作“白1”“白2”,然后列表如下.112例2:一个盒子中装有两个红球,两个白球和一个蓝球,这些红1红2白1白2蓝红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)(红1,蓝)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)(红2,蓝)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)(白1,蓝)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)(白2,蓝)蓝(蓝,红1)(蓝,红2)(蓝,白1)(蓝,白2)(蓝,蓝)第二次第一次总共有25种结果,每种结果出现的可能性相同,而两次摸到的球的颜色能配成紫色的结果有4种即(红1,蓝),(红2,蓝),(蓝,红1),(蓝,红2),P(配成紫色)=红1红2白1白2蓝红1(红1,红1)(红1,红2)(红1,白同步练习如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.12123同步练习如图,袋中装有两个完全相同的球,分别标总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1/6.解:每次游戏时,所有可能出现的结果如下:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)转盘摸球问题3:用树状图怎么解答该题?总共有6种结果,每种结果出现的可能性相同,而所摸例3:王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.(1)用画树状图的方法表示三次抛掷硬币的所有结果;(2)这个游戏规则对两个球队是否公平?为什么?例3:王铮
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川电影电视学院《大学书法》2021-2022学年第一学期期末试卷
- 石河子大学《学前教育史》2022-2023学年第一学期期末试卷
- 幽雅的毕业赠言给老师
- 石河子大学《色彩》2022-2023学年第一学期期末试卷
- 广东省住建局劳务分包合同
- 平安建设简报四篇
- 部编版八年级上册历史复习综合练习题
- 2025届高考生物一轮复习第1单元生命活动的调节练习含解析新人教版必修3
- 2024电脑耗材供货合同协议书
- 2024关于审查《楚雄唯上房产经纪有限公司销售代理合同》法律意见书
- 2022版义务教育数学课程标准解读课件PPT模板
- 实验五 PCR扩增课件
- 马拉松运动医疗支援培训课件
- 中医药宣传手册
- 不良资产处置尽职指引
- 人教部编版七年级历史上册第19课 北魏政治和北方民族大交融课件(23张PPT)
- 机械设备定期检查维修保养使用台账
- 丽声北极星分级绘本第四级上 Stop!Everyone Stop!教学设计
- 小学科学教育科学三年级上册天气《认识气温计》教学设计
- 液化气站气质分析报告管理制度
- 可编辑修改中国地图模板
评论
0/150
提交评论