2022年湖南省长沙市长郡双语实验中学八年级数学第一学期期末经典试题含解析_第1页
2022年湖南省长沙市长郡双语实验中学八年级数学第一学期期末经典试题含解析_第2页
2022年湖南省长沙市长郡双语实验中学八年级数学第一学期期末经典试题含解析_第3页
2022年湖南省长沙市长郡双语实验中学八年级数学第一学期期末经典试题含解析_第4页
2022年湖南省长沙市长郡双语实验中学八年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?().A.0根 B.1根 C.2根 D.3根2.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.9 D.103.如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35° B.45° C.60° D.100°4.一个正方形的面积等于30,则它的边长a满足()A.4<a<5 B.5<a<6 C.6<a<7 D.7<a<85.如图,直线,∠1的度数比∠2的度数大56°,若设,,则可得到的方程组为()A. B. C. D.6.在的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A. B. C. D.7.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和678.下列说法错误的是()A.0.350是精确到0.001的近似数B.3.80万是精确到百位的近似数C.近似数26.9与26.90表示的意义相同D.近似数2.20是由数四会五入得到的,那么数的取值范围是9.下列几组数中,能组成直角三角形的是()A. B. C. D.10.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2 D.(a-b)(a+2b)=a2+ab-b2二、填空题(每小题3分,共24分)11.在△ABC中,AB=AC,与∠BAC相邻的外角为80°,则∠B=________.12.一个多边形的内角和是外角和的倍,那么这个多边形的边数为_______.13.若分式的值为0,则的值为____________.14.如图,是等边三角形,,、相交于点,于,,,则的长是______.15.命题“对顶角相等”的逆命题是__________.16.已知点,直线轴,且则点的坐标为__________.17.自然数4的平方根是______18.如果一个三角形的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,那么这个三角形一定是______.三、解答题(共66分)19.(10分)如图,中,D是的中点,,过D点的直线交于F,交于G点,,交于点E,连结.证明:(1);(2).20.(6分)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.21.(6分)我们知道,假分数可以化为整数与真分数的和的形式.例如:,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,,⋯⋯这样的分式是假分式;像,,⋯⋯这样的分式是真分式.类似的,假分式也可以化为整数与真分式的和的形式.例如:;;或(1)分式是分式(填“真”或“假”)(2)将分式化为整式与真分式的和的形式;(3)如果分式的值为整数,求的整数值.22.(8分)阅读材料:“直角三角形如果有一个角等于,那么这个角所对的边等于斜边的一半”,即“在中,,则”.利用以上知识解决下列问题:如图,已知是的平分线上一点.(1)若与射线分别相交于点,且.①如图1,当时,求证:;②当时,求的值.(2)若与射线的反向延长线、射线分别相交于点,且,请你直接写出线段三者之间的等量关系.23.(8分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?24.(8分)分解因式:.25.(10分)某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:甲:8,8,7,8,9;乙:5,9,7,10,9;甲乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差甲8b80.4乙a9c3.2根据以上信息,回答下列问题:(1)表格是a=,b=,c=.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是.班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是;(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数,中位数,方差.(填“变大”、“变小”或“不变”)26.(10分)先化简,再求值(1),其中,(2),其中

参考答案一、选择题(每小题3分,共30分)1、B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B2、C【解析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×1×AD∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=1故选C.【点睛】本题考查了轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.3、D【分析】要求∠E的大小,先要求出△DFE中∠D的大小,根据全等三角形的性质可知∠D=∠A=45°,然后利用三角形的内角和可得答案.【详解】解:∵△ABC≌△DEF,∠A=45°,∠F=35°∴∠D=∠A=45°∴∠E=180°-∠D-∠F=100°.故选D.4、B【解析】先根据正方形的面积公式可得边长为,再由52=25,62=36,即可求解.【详解】正方形的面积是边长的平方,∵面积为30,∴边长为.∵52=25,62=36,∴,即5<a<6,故选B.【点睛】本题考查了无理数的估算,解题的关键是注意找出和30最接近的两个能完全开方的数.5、B【解析】根据∠1与∠2互补,且∠1的度数比∠2的度数大56°列方程组即可.【详解】∵,∴∠1+∠2=180°,即x+y=180.∵∠1的度数比∠2的度数大56°,∴∠1=∠2+56°,即x=y+56°.∴.故选B.【点睛】本题考查了平行线的性质,二元一次方程组的应用,找出列方程组所需的等量关系是解答本题的关键.6、D【解析】直接利用轴对称图形的定义判断得出即可.【详解】解:A.是轴对称图形,不合题意;B.是轴对称图形,不合题意;C.是轴对称图形,不合题意;D.不是轴对称图形,符合题意;故选:D.【点睛】本题主要考查轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.7、B【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案8、C【分析】根据近似数的精确度对各项进行判断选择即可.【详解】A.0.350是精确到0.001的近似数,正确;B.3.80万是精确到百位的近似数,正确;C.近似数26.9精确到十分位,26.90精确到百分位,表示的意义不相同,所以错误;D.近似数2.20是由数四会五入得到的,那么数的取值范围是,正确;综上,选C.【点睛】本题考查了近似数,精确到第几位是精确度常用的表示形式,熟知此知识点是解题的关键.9、C【分析】先求出两小边的平方和,再求出最大边的平方,看看是否相等即可.【详解】解:A、,以为三边的三角形不能组成直角三角形,故本选项不符合题意;B、,以为三边的三角形不能组成直角三角形,故本选项不符合题意;C、,以为三边的三角形能组成直角三角形,故本选项符合题意;D、,以为三边的三角形不能组成直角三角形,故本选项不符合题意;故选:C.【点睛】本题考查的是勾股定理的逆定理,熟记勾股定理的逆定理的内容以及正确计算是解题的关键.10、B【解析】图(4)中,∵S正方形=a1-1b(a-b)-b1=a1-1ab+b1=(a-b)1,∴(a-b)1=a1-1ab+b1.故选B二、填空题(每小题3分,共24分)11、40°【分析】根据等边对等角可得∠B=∠C,然后根据三角形外角的性质可得∠B+∠C=80°,从而求出∠B.【详解】∵AB=AC,∴∠B=∠C∵与∠BAC相邻的外角为80°,∴∠B+∠C=80°即2∠B=80°∴∠B=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形外角的性质,掌握等边对等角和三角形外角的性质是解决此题的关键.12、1【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=×360°,解得:n=1.故答案为:1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.13、-4【分析】分式等于零时:分子等于零,且分母不等于零.【详解】由分式的值为零的条件得且,由,得,由,得,综上所述,分式的值为0,的值是−4.故答案为:−4.【点睛】此题考查分式的值为零的条件,解题关键在于掌握其性质.14、1【分析】由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=6,AD=BE.即可求解.【详解】∵△ABC为等边三角形,

∴AB=CA,∠BAE=∠ACD=60°;

又∵AE=CD,

在△ABE和△CAD中,,

∴△ABE≌△CAD;

∴BE=AD,∠CAD=∠ABE;

∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;

∵BQ⊥AD,

∴∠AQB=90°,则∠PBQ=90°-60°=30°;

∵PQ=3,

∴在Rt△BPQ中,BP=2PQ=6;

又∵PE=1,

∴AD=BE=BP+PE=1.

故答案为:1.【点睛】本题主要考查了全等三角形的判定与性质及等边三角形的性质及含30°的角的直角三角形的性质;巧妙借助三角形全等和直角三角形中30°的性质求解是正确解答本题的关键.15、相等的角是对顶角【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:相等的角是对顶角.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.16、【分析】由AB∥y轴可得点B的横坐标与点A的横坐标相同,根据AB的距离可得点B的横坐标可能的情况.【详解】解:∵,AB∥y轴,

∴点B的横坐标为3,

∵AB=6,

∴点B的纵坐标为-2-6=-8或-2+6=4,

∴B点的坐标为(3,-8)或(3,4).

故答案为:(3,-8)或(3,4).【点睛】本题主要考查了坐标与图形的性质.理解①平行于y轴的直线上的点的横坐标相等;②一条直线上到一个定点为定长的点有2个是解决此题的关键.17、±1【分析】直接利用平方根的定义分析得出答案.【详解】解:自然数4的平方根是±1.

故答案为:±1.【点睛】此题主要考查了平方根,正确把握平方根的定义是解题关键.18、直角三角形【解析】由已知可得(a-3)2+(b-4)2+(c-5)2=0,求出a,b,c,再根据勾股定理逆定理可得.【详解】∵a2+b2+c2+50=6a+8b+10c

∴a2+b2+c2-6a-8b-10c+50=0

即a2-6a+9+b2-8b+16+c2-10c+25=0

∴(a-3)2+(b-4)2+(c-5)2=0

∴a=3,b=4,c=5

∵a2+b2=c2故答案为:直角三角形【点睛】掌握非负数性质和勾股定理逆定理.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【分析】(1)只需要利用ASA先判定△BGD≌△CFD,即可得出BG=CF;

(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而根据垂直平分线的性质得出EG=EF,再根据三角形两边和大于第三边得出BE+CF>EF.【详解】解:(1)证明:

∵BG∥AC,

∴∠DBG=∠DCF.

∵D为BC的中点,

∴BD=CD

又∵∠BDG=∠CDF,

在△BGD与△CFD中,

∴△BGD≌△CFD(ASA).

∴BG=CF.

(2)∵△BGD≌△CFD,

∴GD=FD,BG=CF.

又∵DE⊥FG,

∴EG=EF(垂直平分线到线段端点的距离相等).

∴在△EBG中,BE+BG>EG,

即BE+CF>EF.【点睛】本题考查全等三角形的性质和判定,三角形三边关系,垂直平分线的性质.(1)中掌握全等三角形的判定定理,并能灵活运用是解题关键;(2)能结合全等三角形的性质和垂直平分线的性质把线段代换到同一个三角形中是解题关键.20、证明见解析.【解析】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.21、(1)真;(2);(1)x=0或2或-1或1【分析】(1)根据新定义和分子、分母的次数即可判断;(2)根据例题的变形方法,即可得出结论;(1)先根据例题的变形方法,将原分式化为整式与真分式的和的形式,然后根据式子的特征即可得出结论.【详解】解:(1)∵分子8的次数为0,分母的次数为1∴分式是真分式,故答案为:真;(2)根据例题的变形方法:故答案为:;(1)∵分式的值为整数,∴也必须为整数∵x也为整数∴或解得:x=0或2或-1或1.【点睛】此题考查的是与分式有关的新定义类问题、整式次数的判定和分式的相关运算,根据新定义及例题的变形方法解决相关问题是解决此题的关键.22、(1)①证明见解析;②;(2)OM-ON=【分析】(1)①根据题意证明CNO=90°及∠COM=∠CON=30°,可利用题目中信息得到OM=ON,再利用勾股定理即可解答;②证明△COM≌CON,得到∠CMO=∠CNO=90°,再利用①中结论即可;(2)根据题意作出辅助线,再证明△MCE≌△NCF(ASA),得到NF=ME,由30°直角三角形的性质得到OE=OF=,进而得到OM-ON=即可.【详解】(1)①证明:∵CM⊥OA,∴∠CMO=90°,∵,∠MCN=120°,∴∠CNO=360°-∠CMO-∠AOB-∠MCN=90°,∵C是∠AOB平分线上的一点,∴CM=CN,∠COM=∠CON=30°,∵OC=2,∴CM=CN=1,由勾股定理可得:OM=ON=,∴②当时,∵OC是∠AOB的平分线,∴∠COM=∠CON=30°,在△COM与CON中∴△COM≌CON(SAS)∴∠CMO=∠CNO∵∠AOB=60°,∠MCN=120°,∴∠CMO+∠CNO=360°-60°-120°=180°∴∠CMO=∠CNO=90°,又①可知(2)如图所示,作CE⊥OA于点E,作CF⊥OB于点F,∵∠AOB=60°,∴∠ECF=120°,又∵∠MCN=120°,∴∠MCE+∠ECN=∠NCF+∠ECN∴∠MCE=∠NCF∵OC是∠AOB的平分线,∴∠COM=∠CON=30°,CE=CF∴在△MCE与△NCF中,∴△MCE≌△NCF(ASA)∴NF=ME又∵△OCE≌△OCF,∠COM=∠CON=30°,∴CE=CF=∴OE=OF=∴OM-OE=ON+OF,∴OM-ON=OE+OF=,故答案为:OM-ON=【点睛】本题考查了含30°直角三角形的性质、勾股定理的计算以及全等三角形的性质与判定,解题的关键是熟知含30°直角三角形的性质并灵活构造全等三角形.23、甲、乙两种节能灯分别购进40、60只;商场获利1300元.【分析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可.【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得

,答:甲、乙两种节能灯分别购进40、60只.(2)商场获利元,答:商场获利1300元.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论