版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列命题中,是假命题的是()A.对顶角相等 B.同位角相等C.同角的余角相等 D.全等三角形的面积相等2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.大正方形的面积为41,小正方形的面积为4,设直角三角形较长直角边长为a,较短直角边长为b.给出四个结论:①a2+b2=41;②a-b=2;③2ab=45;④a+b=1.其中正确的结论是()A.①②③ B.①②③④ C.①③ D.②④3.小马虎在下面的计算中只做对了一道题,他做对的题目是()A. B. C. D.4.一次函数y=-3x-2的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.满足不等式的正整数是()A.2.5 B. C.-2 D.56.小莹和小博士下棋小莹执圆子,小博士执方子如图,棋盘中心方子的位置用表示,左下角方子的位置用表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是A. B. C. D.7.如图,是一高为2m,宽为1.5m的门框,李师傳有3块薄木板,尺寸如下:①号木板长3m,宽2.7m;②号木板长2.8m,宽2.8m;③号木板长4m,宽2.4m.可以从这扇门通过的木板是()A.①号 B.②号 C.③号 D.均不能通过8.下列说法中正确的是()A.的值是±5 B.两个无理数的和仍是无理数C.-3没有立方根. D.是最简二次根式.9.如图,一直线与两坐标轴的正半轴分别交于,两点,是线段上任意一点(不包括端点),过点分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A. B. C. D.10.如图,数轴上的点分别表示数-1,1,2,3,则表示的点应在()A.线段上 B.线段上 C.线段上 D.线段上二、填空题(每小题3分,共24分)11.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.12._______13.用科学计数法表示为______14.若a+b=4,ab=1,则a2b+ab2=________.15.如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为_____cm时,线段CQ+PQ的和为最小.16.己知a2-3a+1=0,则数式(a+1)(a-4)的值为______。17.甲、乙俩射击运动员进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示.则甲、乙射击成绩的方差之间关系是(填“<”,“=”,“>”).18.我国许多城市的“灰霾”天气严重,影响身体健康.“灰霾”天气的最主要成因是直径小于或等于微米的细颗粒物(即),已知微米米,此数据用科学记数法表示为__________米.三、解答题(共66分)19.(10分)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.20.(6分)如图,已知∠DAE+∠CBF=180°,CE平分∠BCD,∠BCD=2∠E.(1)求证:AD∥BC;(2)CD与EF平行吗?写出证明过程;(3)若DF平分∠ADC,求证:CE⊥DF.21.(6分)(问题解决)一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=1.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.(类比探究)如图2,若点P是正方形ABCD外一点,PA=1,PB=1,PC=,求∠APB的度数.22.(8分)已知如图,直线与x轴相交于点A,与直线相交于点P.PD垂直x轴,垂足为D.(1)求点P的坐标.(2)请判断△OPA的形状并说明理由.23.(8分)如图,在△ABC中,AC=6,BC=8,DE是△ABD的边AB上的高,且DE=4,AD=,BD=.求证:△ABC是直角三角形.24.(8分)(1)计算:(2)观察下列等式:=1-;=-;=-;……,探究并解方程:+=.25.(10分)如图,在平面直角坐标系中,,,且,满足,直线经过点和.(1)点的坐标为(,),点的坐标为(,);(2)如图1,已知直线经过点和轴上一点,,点在直线AB上且位于轴右侧图象上一点,连接,且.①求点坐标;②将沿直线AM平移得到,平移后的点与点重合,为上的一动点,当的值最小时,请求出最小值及此时N点的坐标;(3)如图2,将点向左平移2个单位到点,直线经过点和,点是点关于轴的对称点,直线经过点和点,动点从原点出发沿着轴正方向运动,连接,过点作直线的垂线交轴于点,在直线上是否存在点,使得是等腰直角三角形?若存在,求出点坐标.26.(10分)如图,AB//CD,Rt△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,∠EFG=90°,∠E=32°.(1)∠FGE=°(2)若GE平分∠FGD,求∠EFB的度数.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.【详解】A.对顶角相等是真命题,故该选项不合题意,B.两直线平行,同位角相等,故该选项是假命题,符合题意,C.同角的余角相等是真命题,故该选项不合题意,D.全等三角形的面积相等是真命题,故该选项不合题意.故选:B.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2、A【分析】观察图形可知,大正方形的边长为直角三角形的斜边长,根据勾股定理即可得到大正方形的边长,从而得到①正确,根据题意得4个直角三角形的面积=4××ab=大正方形的面积-小正方形的面积,从而得到③正确,根据①③可得②正确,④错误.【详解】解:∵直角三角形较长直角边长为a,较短直角边长为b,∴斜边的平方=a2+b2,由图知,大正方形的边长为直角三角形的斜边长,∴大正方形的面积=斜边的平方=a2+b2,即a2+b2=41,故①正确;根据题意得4个直角三角形的面积=4××ab=2ab,4个直角三角形的面积=S大正方形-S小正方形=41-4=45,即2ab=45,故③正确;由①③可得a2+b2+2ab=41+45=14,即(a+b)2=14,∵a+b>0,∴a+b=,故④错误,由①③可得a2+b2-2ab=41-45=4,即(a-b)2=4,∵a-b>0,∴a-b=2,故②正确.故选A.【点睛】本题考查了勾股定理的运用,完全平方公式的运用等知识.熟练运用勾股定理是解题的关键.3、D【分析】根据分式的运算法则逐一计算即可得答案.【详解】A.,故该选项计算错误,不符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算错误,不符合题意,D.,故该选项计算正确,符合题意,故选:D.【点睛】本题考查分式的运算,熟练掌握运算法则是解题关键.4、A【分析】根据一次函数的性质,当k<0,b<0时,图象经过第二、三、四象限解答.【详解】解:∵k=-3<0,∴函数经过第二、四象限,∵b=﹣2<0,∴函数与y轴负半轴相交,∴图象不经过第一象限.故选A【点睛】本题考查一次函数的性质,利用数形结合思想解题是关键.5、D【解析】在取值范围内找到满足条件的正整数解即可.【详解】不等式的正整数解有无数个,四个选项中满足条件的只有5故选:D.【点睛】考查不等式的解,使不等式成立的未知数的值就是不等式的解.6、B【解析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义确定放的位置.【详解】解:棋盘中心方子的位置用表示,则这点所在的横线是x轴,左下角方子的位置用,则这点向右两个单位所在的纵线是y轴,则小莹将第4枚圆子放的位置是时构成轴对称图形.故选:B.【点睛】本题考查了轴对称图形和坐标位置的确定,正确确定x轴、y轴的位置是关键.7、C【分析】根据勾股定理,先计算出能通过的最大距离,然后和题中数据相比较即可.【详解】解:如图,由勾股定理可得:所以此门通过的木板最长为,所以木板的长和宽中必须有一个数据小于2.5米.所以选③号木板.故选C.【点睛】本题考查的是勾股定理的实际应用,掌握勾股定理的应用,理解题意是解题的关键.8、D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】,故A选项错误;,故B选项错误;-3的立方根为,故C选项错误;是最简二次根式,故D选项正确;故选D.【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.9、A【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据围成的矩形的周长为8,可得到x、y之间的关系式.【详解】如图,过点分别作轴,轴,垂足分别为、,设点坐标为,点在第一象限,,,矩形的周长为8,,,即该直线的函数表达式是,故选.【点睛】本题主要考查矩形的性质及一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.根据坐标的意义得出x、y之间的关系是解题的关键.10、D【分析】根据5在平方数4与9之间,可得的取值范围,再根据不等式的性质估算出的值的取值范围即可确定P点的位置.【详解】∵∴,即∴点P在线段AO上故选:D【点睛】此题主要考查了无理数的估算,解题关键是正确估算的值的取值范围.二、填空题(每小题3分,共24分)11、1.【分析】设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.【详解】解:设小矩形的长为x,宽为y,则可列出方程组,,解得,则小矩形的面积为6×10=1.【点睛】本题考查了二元一次方程组的应用.12、【分析】根据幂的运算法则即可求解.【详解】故答案为:.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.13、2.57×10−1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】=2.57×10−1.故答案为:2.57×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、1【解析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a2b+ab2=ab(a+b)=1×1=1.故答案为:1.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.15、1.【分析】连接AQ,依据等边三角形的性质,即可得到CQ=AQ,依据当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,即可得到BP的长.【详解】如图,连接AQ,∵等边△ABC中,BD为AC边上的中线,∴BD垂直平分AC,∴CQ=AQ,∴CQ+PQ=AQ+PQ,∴当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,此时,P为BC的中点,又∵等边△ABC的周长为18cm,∴BP=BC=×6=1cm,故答案为1.【点睛】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.16、-5【分析】先化简数式(a+1)(a-4),再用整体代入法求解即可.【详解】∵a2-3a+1=0,∴a2-3a=-1,(a+1)(a-4)=a2-3a-4=-1-4=-5【点睛】熟练掌握整式化简及整体代入法是解决本题的关键.17、<【分析】从折线图中得出乙的射击成绩,再利用方差的公式计算,最后进行比较即可解答.【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,10,7,9,10,7,10,8,甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,乙的方差S乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.35∴S2甲<S2乙.【点睛】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】,故答案为.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题(共66分)19、证明见解析【分析】欲证BD=DE,只需证∠DBE=∠E,根据等边三角形的性质及角的等量关系可证明∠DBE=∠E=30°.【详解】∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.【点睛】考点:1.等边三角形的性质;2.三角形内角和定理;3.等腰三角形的判定与性质.20、(1)详见解析;(2)CD∥EF,证明详见解析;(3)详见解析.【分析】(1)根据同角的补角相等,即可得到∠CBF=∠DAB,进而得到AD∥BC;(2)依据∠BCD=2∠DCE,∠BCD=2∠E,即可得出∠E=∠DCE,进而判定CD∥EF;(3)依据AD∥BC,可得∠ADC+∠DCB=180°,进而得到∠COD=90°,即可得出CE⊥DF.【详解】解:(1)∵∠DAE+∠CBF=180°,∠DAE+∠DAB=180°,∴∠CBF=∠DAB,∴AD∥BC;(2)CD与EF平行.∵CE平分∠BCD,∴∠BCD=2∠DCE,又∵∠BCD=2∠E,∴∠E=∠DCE,∴CD∥EF;(3)∵DF平分∠ADC,∴∠CDF=∠ADC,∵∠BCD=2∠DCE,∴∠DCE=∠DCB,∵AD∥BC,∴∠ADC+∠DCB=180°,∴∠CDF+∠DCE=(∠ADC+∠DCB)=90°,∴∠COD=90°,∴CE⊥DF.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21、(1)见解析;(2)见解析.【解析】分析:(1)先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=1,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;(2)同(1)的思路一的方法即可得出结论.详解:(1)如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=1,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,PP'=BP=2,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=12=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=115°;(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=1,AP'=CP=,在Rt△PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,PP'=BP=,∵AP=1,∴AP2+PP'2=9+2=11,∵AP'2=()2=11,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.点睛:此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.22、(1);(2)等边三角形,理由见解析【分析】(1)联立两个解析式,求解即可求得P点的坐标;(2)先求出OA=4,然后根据PD⊥X轴于D,且点P的坐标为(2,),可得OD=AD=2,PD=,然后根据勾股定理可得OP=4,PA=4即可证明△POA是等边三角形.【详解】解:(1)联立两个解析式得,解得,∴点P的坐标为(2,);(2)△OPA为等边三角形,理由:将y=0代入,∴,∴解得x=4,即OA=4,∵PD⊥X轴于D,且点P的坐标为(2,),∴OD=AD=2,PD=,由勾股定理得OP=,同理可得PA=4∴△POA是等边三角形.【点睛】本题考查了一次函数的性质,勾股定理,等边三角形的判定和等腰三角形的性质,求出点P的坐标是解题关键.23、详见解析【分析】先根据勾股定理求出AE和BE,求出AB,根据勾股逆定理的逆定理可证△ABC是直角三角形.【详解】证明:DE是AB边上的高,∴∠AED=∠BED=90°,在Rt△ADE中,在Rt△BDE中,∴AB=2+8=1.在△ABC中,由AB=1,AC=6,BC=8,∵∴∴△ABC是直角三角形.【点睛】本题考查了勾股定理和勾股定理的逆定理,正确理解定理的内容是关键.24、(1);(2).【分析】(1)根据除法法则,先把除法统一成乘法,再约分;(3)方程左边利用拆项法变形,再按一般分式方程解答即可.【详解】(1)==;(2);,方程整理,得,方程两边同时乘以,得:,去括号,得,解得,检验:当时,,所以原分式方程的解为.【点睛】本题考查了分式的乘除混合运算以及解分式方程,解第(2)题的关键学会拆项变形.注意解分式方程要检验.25、(1)-1,0;0,-3;(2)①点;②点,最小值为;(3)点的坐标为或或.【分析】(1)根据两个非负数和为0的性质即可求得点A、B的坐标;(2)①先求得直线AB的解析式,根据求得,继而求得点的横坐标,从而求得答案;②先求得直线AM的解析式及点的坐标,过点过轴的平行线交直线与点,过点作垂直于的延长线于点,求得,即为最小值,即点为所求,求得点的坐标,再求得的长即可;(3)先求得直线BD的解析式,设点,同理求得直线的解析式,求出点的坐标为,证得,分∠QGE为直角、∠EQG为直角、∠QEG为直角,三种情况分别求解即可.【详解】(1)∵,∴,,则,故点A、B的坐标分别为:,故答案为:;;(2)①直线经过点和轴上一点,,∴,由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新小区物业承包合同示例
- 2024系统开发合同
- 2024年餐厅租赁合同模板
- 2024分期付款购买合同
- 文化节庆活动赞助协议
- 2025年会计专业考试高级会计实务试卷及解答参考
- 排水箱涵劳务分包合同2024年
- 城市管道天然气特许经营合同
- 抚养权变更协议模板2024年
- 协商一致解除劳动合同书样本
- 新苏教版五年级上册科学全册教学课件(2022年春整理)
- 小学体育水平一《走与游戏》教学设计
- 秋日私语(完整精确版)克莱德曼(原版)钢琴双手简谱 钢琴谱
- 办公室室内装修工程技术规范
- 盐酸安全知识培训
- 万盛关于成立医疗设备公司组建方案(参考模板)
- 消防安全巡查记录台帐(共2页)
- 科技特派员工作调研报告
- 中波广播发送系统概述
- 县疾控中心中层干部竞聘上岗实施方案
- 急性心肌梗死精美PPt完整版
评论
0/150
提交评论