2022年湖北省武汉市部分重点学校数学八年级第一学期期末教学质量检测模拟试题含解析_第1页
2022年湖北省武汉市部分重点学校数学八年级第一学期期末教学质量检测模拟试题含解析_第2页
2022年湖北省武汉市部分重点学校数学八年级第一学期期末教学质量检测模拟试题含解析_第3页
2022年湖北省武汉市部分重点学校数学八年级第一学期期末教学质量检测模拟试题含解析_第4页
2022年湖北省武汉市部分重点学校数学八年级第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若一个数的平方根是±8,那么这个数的立方根是()A.2 B.±4 C.4 D.±22.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A. B. C.4 D.53.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.在代数式和中,均可以取的值为()A.9 B.3 C.0 D.-25.如图,在中,,,点、分别在边、上,,点是边上一动点,当的值最小时,,则为()A. B. C. D.6.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6 B.4 C.4.8 D.57.如图,在中,,于点,,,则的度数为()A. B. C. D.8.下列因式分解正确的是()A. B.C. D.9.如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是(

)A.AB=DE B.∠A=D C.AC=DF D.AC∥DF10.下列垃圾分类的图标中,轴对称图形是()A. B. C. D.11.已知是二元一次方程组的解,则的值为A.-1 B.1 C.2 D.312.若,则的值为()A. B.-3 C. D.3二、填空题(每题4分,共24分)13.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用时间相等,那么他的步行速度为_____千米/小时.14.已知(x+y+2)20,则的值是____.15.如图,,要使,还需添加一个条件是:______.(填上你认为适当的一个条件即可)16.今年我国发生的猪瘟疫情是由一种病毒引起的,这种病毒的直径约0.000000085米.数据0.000000085米用科学记数法表示为______米.17.一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________.18.一个六边形的内角和是___________.三、解答题(共78分)19.(8分)阅读下面的计算过程:①=②=③=④上面过程中(有或无)错误,如果有错误,请写出该步的代号.写出正确的计算过程.20.(8分)已知一个多边形的每一个内角都比它相邻的外角的3倍多20,求此多边形的边数.21.(8分)如图,在△ABC中,AD是∠BAC的平分线,M是BC的中点,过M作MP∥AD交AC于P,求证:AB+AP=PC.22.(10分)一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,梯子的顶端下滑2米后,底端将水平滑动2米吗?试说明理由.23.(10分)阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.24.(10分)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.25.(12分)甲、乙两家园林公司承接了某项园林绿化工程,知乙公司单独完成此项工程所需要的天数是甲公司单独完成所需要天数的倍,如果甲公司先单独工作天,再由乙公司单独工作天,这样恰好完成整个工程的.求甲、乙两公司单独完成这项工程各需多少天?26.如图,在矩形中,,垂足分别为,连接.求证:四边形是平行四边形.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据平方根定义,先求这个数,再求这个数的立方根.【详解】若一个数的平方根是±8,那么这个数是82=64,所以,这个数的立方根是.故选:C【点睛】本题考核知识点:平方根和立方根.解题关键点:理解平方根和立方根的意义.2、C【分析】设BQ=x,则由折叠的性质可得DQ=AQ=9-x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=1.故线段BQ的长为1.故选:C.【点睛】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.3、A【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,是中心对称图形,故本选项符合题意;

B、是轴对称图形,不是中心对称图形,故本选项不符合题意;

C、不是轴对称图形,也不是中心对称图形,故本选项不符合题意;

D、不是轴对称图形,是中心对称图形,故本选项不符合题意.

故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、A【分析】根据分式与算术平方根式有意义的条件,可得x的取值范围,一一判断可得答案.【详解】解:有题意得:和由意义,得:,可得;x>3,其中x可以为9,故选A.【点睛】本题主要考查分式与算术平方根式有意义的条件.5、B【分析】延长至点,使,过点作于点,交于点,则此时的值最小.最后根据直角三角形的边角关系求解即可.【详解】如图,延长至点,使,过点作于点,交于点,则此时的值最小.在中,,.,,,.,.,,.,,.在中,,.,,.故选B.【点睛】本题考查了最短路径问题,涉及到最短路径问题,一般要考虑线段的性质定理,结合轴对称变换来解决,因此利用轴对称找到对称点是解题的关键.6、D【分析】首先根据勾股定理的逆定理可判定此三角形是直角三角形,则最大边上的中线即为斜边上的中线,然后根据直角三角形斜边上的中线等于斜边的一半,从而得出结果.【详解】解:∵62+82=100=102,∴三边长分别为6cm、8cm、10cm的三角形是直角三角形,最大边是斜边为10cm.∴最大边上的中线长为5cm.故选D.【点睛】本题考查勾股定理的逆定理;直角三角形斜边上的中线.7、D【分析】根据角平分线的判定可知,BD平分∠ABC,根据已知条件可求出∠A的度数.【详解】解:∵,,且∴是的角平分线,∴,∴,∴在中,,故答案选D.【点睛】本题主要考查角平分线的判定及三角形角度计算问题,理解角平分线的判定条件是解题的关键.8、D【分析】因式分解:把一个整式化为几个因式的积的形式.从而可以得到答案.【详解】A没有把化为因式积的形式,所以A错误,B从左往右的变形不是恒等变形,因式分解是恒等变形,所以B错误,C变形也不是恒等变形所以错误,D化为几个因式的积的形式,是因式分解,所以D正确.故选D.【点睛】本题考查的是多项式的因式分解,掌握因式分解的定义是解题关键.9、C【分析】由已知条件得到相应边相等和对应角相等.再根据全等三角形的判定定理“AAS”,“SAS”,“ASA”依次判断.【详解】∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,∵AB//DE,∴∠B=∠DEF,其中BC是∠B的边,EF是∠DEF的边,根据“SAS”可以添加边“AB=DE”,故A可以,故A不符合题意;根据“AAS”可以添加角“∠A=∠D”,故A可以,故B不符合题意;根据“ASA”可以添加角“∠ACB=∠DFE”,故D可以,故D不符合题意;故答案为C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10、D【分析】根据轴对称图形的定义即可判断.【详解】解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.故选:D.【点睛】本题考查了轴对称图形,只要掌握基本知识点,再认真审题,看清题目要求,细心做答本题就很容易完成.11、A【解析】试题分析:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①-②,得b=3,∴a-b=-1;故选A.考点:二元一次方程的解.12、D【分析】根据绝对值和算术平方根非负数性质进行化简即可.【详解】因为所以故选:D【点睛】考核知识点:二次根式.理解二次根式的意义,利用算术平方根非负数性质解决问题是关键点.二、填空题(每题4分,共24分)13、4【分析】先设他骑自行车的速度每小时走x千米,根据他步行12千米所用的时间与骑自行车36千米所用的时间相等,列出方程,求出方程的解即可求出骑自行车的速度,再根据步行速度=骑自行车速度-8可得出结论.【详解】设他骑自行车的速度每小时走x千米,根据题意得:=解得:x=12,经检验:x=12是原分式方程的解.则步行的速度=12-8=4.答:他步行的速度是4千米/小时.故答案为4.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.14、.【分析】利用平方和算术平方根的意义确定(x+y+2)2⩾0,,从而确定x+y+2=0且x−y−4=0,建立二元一次方程组求出x和y的值,再代入求值即可.【详解】解:∵(x+y+2)2≥0,0,且(x+y+2)20,∴(x+y+2)2=0,0,即解得:则.故答案为:.【点睛】本题重点考查偶次方和算术平方根的非负性,是一种典型的“0+0=0”的模式题型,需重点掌握;另外此题结合了二元一次方程组的运算,需熟练掌握“加减消元法”和“代入消元法”这两个基本的运算方法.15、或或【分析】由∠1=∠2可得∠AEB=∠AEC,AD为公共边,根据全等三角形的判定添加条件即可.【详解】∵∠1=∠2,∴∠AEB=∠AEC,∵AE为公共边,∴根据“SAS”得到三角形全等,可添加BE=CE;根据“AAS”可添加∠B=∠C;根据“ASA”可添加∠BAE=∠CAE;故答案为:BE=CE或∠B=∠C或∠BAE=∠CAE.【点睛】本题考查全等三角形的判定,全等三角形的常用的判定方法有SSS、SAS、AAS、ASA、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.熟练掌握全等三角形的判定定理是解题的关键.16、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:根据科学记数法的表示方法,0.000000015=1.5×10-1.

故答案为:1.5×10-1【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、1【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n-2)•180°=5×360°,解得n=1.故答案为1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.18、720°【分析】根据多边形内角和公式即可求解.【详解】根据多边形的内角和定理可得:六边形的内角和=(6-2)×180°=720°.【点睛】本题多边形的内角和,熟记公式是关键.三、解答题(共78分)19、有,②,过程见解析【分析】第一步通分正确,第二步少分母,这是不正确的,分母只能通过与分子约分化去.【详解】解:有错误;②;正确的计算过程是:====【点睛】本题考查了异分母分式的加减,熟练掌握运算法则是解题的关键.20、1.【分析】设多边形的一个外角为x,则与其相邻的内角等于3x+20°,根据内角与其相邻的外角的和是180度列出方程,求出x的值,再由多边形的外角和为360°,求出此多边形的边数为360°÷x,然后根据多边形内角和公式求解.【详解】解:设多边形的一个外角为x,则与其相邻的内角等于3x+20°,由题意,得

(3x+20)+x=180°,解得x=40°.

即多边形的每个外角为40°.

又∵多边形的外角和为360°,

∴多边形的外角个数==1.

∴多边形的边数为1.故答案为1.【点睛】本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,运用方程求解比较简便.21、证明见解析.【分析】延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,由AD是∠BAC的平分线,AD∥PM得∠E=∠APE,AP=AE,再证△BMF≌△CMP,得PC=BF,∠F=∠CPM,进而即可得到结论.【详解】延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵AD∥PM∴∠BAD=∠E,∠CAD=∠APE=∠CPM∴∠E=∠APE∴AP=AE.∵M是BC的中点,∴BM=MC∵BF∥AC∴∠ACB=∠CBF,又∵∠BMF=∠CMP,∴△BMF≌△CMP(ASA),∴PC=BF,∠F=∠CPM,∴∠F=∠E,∴BE=BF∴PC=BE=BA+AE=BA+AP.【点睛】本题主要考查角平分线的定义以及平行线的性质,三角形全等的判定和性质定理以及等腰三角形的判定定理,添加合适的辅助线,构造全等三角形和等腰三角形,是解题的关键.22、梯子的顶端下滑2米后,底端将水平滑动2米【解析】根据题意两次运用勾股定理即可解答【详解】解:由题意可知,AB=10m,AC=8m,AD=2m,在Rt△ABC中,由勾股定理得BC===6;当B划到E时,DE=AB=10m,CD=AC﹣AD=8﹣2=6m;在Rt△CDE中,CE===8,BE=CE﹣BC=8﹣6=2m.答:梯子的顶端下滑2米后,底端将水平滑动2米.【点睛】本题考查了勾股定理的应用,根据两边求第三边是解决问题的关键23、(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG为等边三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【点睛】本题考查了全等三角形的判定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论