福建省龙岩市武平县城郊中学2016届九年级(下)期中数学试卷(解析版)_第1页
福建省龙岩市武平县城郊中学2016届九年级(下)期中数学试卷(解析版)_第2页
福建省龙岩市武平县城郊中学2016届九年级(下)期中数学试卷(解析版)_第3页
福建省龙岩市武平县城郊中学2016届九年级(下)期中数学试卷(解析版)_第4页
福建省龙岩市武平县城郊中学2016届九年级(下)期中数学试卷(解析版)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2015-2016学年福建省龙岩市武平县城郊中学九年级(下)期中数学试一、选择题(共10小题,每小题4分,满分40分)1.﹣3的绝对值为()A.3 B.﹣3 C.±3 D.92.下列运算正确的是()A.2a+2a=2a2 B.(﹣a+b)(﹣a﹣b)=a2﹣b2C.(2a2)3=8a5 D.a2•a3=a63.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个 B.2个 C.3个 D.4个4.下面的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是()A. B. C. D.5.在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A. B. C. D.6.下面用正负数表示四个足球与规定克数偏差的克数,其中质量好一些的是()A.+10 B.﹣20 C.﹣5 D.+157.若一个正多边形的一个外角是40°,则这个正多边形的边数是()A.10 B.9 C.8 D.68.如图,抛物线y=ax2+bx+c,OA=OC,下列关系中正确的是()A.ac+1=b B.ab+1=c C.bc+1=a D.+1=c9.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中一定正确的是()A.②④ B.①③ C.①④ D.②③10.如图,点E、F是以线段BC为公共弦的两条圆弧的中点,BC=6.点A、D分别为线段EF、BC上的动点.连接AB、AD,设BD=x,AB2﹣AD2=y,下列图象中,能表示y与x的函数关系的图象是()A. B. C. D.二、填空题.(本大题共6小题,每小题4分,共24分)11.上海世博会的主题馆与中国馆利用太阳能发电,年发电量可达2840000度.2840000用科学记数法可表示为.(保留两个有效数字)12.若有意义,则x的取值范围是.13.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是.14.分解因式:xy2﹣x=.15.如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i=,则AC的长度是cm.16.如图,长方体的底面边长分别为3cm和2cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.三、解答题.(本大题共9小题,共86分)17.计算:18.先化简,再求值:÷﹣,其中a=tan60°.19.解不等式组,并在数轴上表示解集.20.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.21.我市各学校九年级学生在体育测试前,都在积极训练自己的考试项目,王强就本班同学“自己选测的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“排球”部分所对应的圆心角度数为;(4)若全校有360名学生,请计算出全校“其他”部分的学生人数.22.为了美化学习环境,加强校园绿化建设,某校计划用不多于5200元的资金购买A、B两种树苗共60棵(可以是同一种树苗),加强校园绿化建设.若购买A种树苗x棵,所需总资金为y元,A、B两种树苗的相关信息如表:项目品种单价(元/棵)成活率A10098%B6090%(1)求y与x之间的函数关系式;(2)若要使得所购买树苗的成活率不低于95%,有几种选购方案?所用的资金分别是多少?23.为了参观上海世博会,某公司安排甲、乙两车分别从相距300千米的上海、泰州两地同时出发相向而行,甲到泰州带客后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)请直接写出甲离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(2)当它们行驶4.5小时后离各自出发点的距离相等,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,甲、乙两车从各自出发地驶出后经过多少时间相遇?24.已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(﹣,0),AC的延长线与⊙B的切线OD交于点D.(1)求OC的长和∠CAO的度数;(2)求过D点的反比例函数的表达式.25.图1是边长分别为4和2的两个等边三角形纸片ABC和OD′E′叠放在一起(C与O重合).(1)操作:固定△ABC,将△ODE绕点C顺时针旋转30°,后得到△ODE,连接AD、BE、CE的延长线交AB于F(图2):探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.(2)在(1)的条件下将△ODE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR,当点P与点F重合时停止运动(图3).探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.(3)将图1中△ODE固定,把△ABC沿着OE方向平移,使顶点C落在OE的中点G处,设为△ABG,然后奖△ABG绕点G顺时针旋转,边BG交边DE于点M,边AG交边DO于点N,设∠BGE=α(30°<α<90°)(图4).探究:在图4中,线段ON•EM的值是否随α的变化而变化?如果没有变化,请你求出ON•EM的值,如果有变化,请你说明.

2015-2016学年福建省龙岩市武平县城郊中学九年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.﹣3的绝对值为()A.3 B.﹣3 C.±3 D.9【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣3的绝对值为3,即|﹣3|=3.故选A.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列运算正确的是()A.2a+2a=2a2 B.(﹣a+b)(﹣a﹣b)=a2﹣b2C.(2a2)3=8a5 D.a2•a3=a6【考点】平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项的法则,平方差公式,幂的乘方与积的乘方法则,及同底数幂的乘法法则得出.【解答】解:A、应为2a+2a=4a,故选项错误;B、(﹣a+b)(﹣a﹣b)=(a﹣b)(a+b)=a2﹣b2,故正确;C、应为(2a2)3=8a6,故选项错误;D、应为a2•a3=a5,故选项错误.故选B.【点评】本题考查合并同类项,平方差公式,幂的乘方与积的乘方,同底数幂的乘法的性质,熟练掌握运算性质是解题的关键.3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个 B.2个 C.3个 D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形是轴对称图形,是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,是中心对称图形;第四个图形是轴对称图形,是中心对称图形.共有3个图形既是轴对称图形,也是中心对称图形,故选C.【点评】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下面的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从左面看得到的平面图形即可.【解答】解:左视图从左往右2列正方形的个数依次为3,1,故选A.【点评】考查简单组合几何体的三视图知识;用到的知识点为:左视图是从几何体左面看得到的平面图形.5.在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A. B. C. D.【考点】概率公式.【分析】根据摸出一个球是绿球的概率是,得出蓝球的个数,进而得出小球总数,即可得出随机摸出一个球是蓝球的概率.【解答】解:∵在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,随机摸出一个球是绿球的概率是,设蓝球x个,∴=,解得:x=9,∴随机摸出一个球是蓝球的概率是:.故选:D.【点评】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.6.下面用正负数表示四个足球与规定克数偏差的克数,其中质量好一些的是()A.+10 B.﹣20 C.﹣5 D.+15【考点】正数和负数.【分析】本题需先求出四个数的绝对值,然后找出绝对值最小的数即可.【解答】解:∵|+10|=10,|﹣20|=20,|﹣5|=5,|+15|=15,∴﹣5的绝对值最小,∴C正确.故选C.【点评】本题主要考查了正数和负数,在解题时要根据绝对值表示的意义找出正确答案是本题的关键.7.若一个正多边形的一个外角是40°,则这个正多边形的边数是()A.10 B.9 C.8 D.6【考点】多边形内角与外角.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故选:B.【点评】本题考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°.解答这类题往往一些学生因对正多边形的外角和知识不明确,将多边形外角和与内角和相混淆而造成错误计算,误选其它选项.8.如图,抛物线y=ax2+bx+c,OA=OC,下列关系中正确的是()A.ac+1=b B.ab+1=c C.bc+1=a D.+1=c【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线与y轴相交于点C,就可知道C点的坐标,然后代入函数式,即可得到答案.【解答】解:由抛物线与y轴相交于点C,就可知道C点的坐标为(0,c),又因OC=OA,所以A(﹣c,0),把它代入y=ax2+bx+c,即ac2﹣bc+c=0,两边同时除以c,即得到ac﹣b+1=0,所以ac+1=b,故本题选A.【点评】根据抛物线与x轴,y轴的交点判断交点坐标,然后代入函数式,推理a,b,c之间的关系.9.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中一定正确的是()A.②④ B.①③ C.①④ D.②③【考点】旋转的性质;全等三角形的判定与性质;相似三角形的判定与性质.【分析】由△ADC绕点A顺时针旋转90°得△AFB,可知△ADC≌△AFB,∠FAD=90°,由∠DAE=45°可判断∠FAE=∠DAE,可证①△AED≌△AEF.由已知条件可证△BEF为直角三角形,则有④BE2+DC2=DE2是正确的.【解答】解:∵△ADC绕点A顺时针旋转90°得△AFB,∴△ADC≌△AFB,∠FAD=90°,∴AD=AF,∵∠DAE=45°,∴∠FAE=90°﹣∠DAE=45°,∴∠DAE=∠FAE,在△AED与△AEF中,,∴△AED≌△AEF(SAS),故①正确;∵∠BAE与∠CAD的大小无法确定,∴△ABE与△ACD是否相似无法确定,故②错误;同理,DE与BE+DC的大小也无法确定,故③错误;∵△AED≌△AEF,∴ED=FE,∠ACB=∠ABF,在Rt△ABC中,∵∠ABC+∠ACB=90°,∴∠ABC+∠ABF=90°即∠FBE=90°,∴BE2+BF2=FE2,即BE2+DC2=DE2,故④正确.故选C.【点评】本题考查的是相似三角形的判定与性质,涉及到全都三角形的判定与性质、图形旋转的性质等知识,难度适中.10.如图,点E、F是以线段BC为公共弦的两条圆弧的中点,BC=6.点A、D分别为线段EF、BC上的动点.连接AB、AD,设BD=x,AB2﹣AD2=y,下列图象中,能表示y与x的函数关系的图象是()A. B. C. D.【考点】动点问题的函数图象;垂径定理.【专题】应用题;压轴题.【分析】延长EF与弦BC相交于点G,根据条件先正面EF的延长线垂直平分BC,利用勾股定理得到y=AB2﹣AD2=BG2+AG2﹣DG2﹣AG2=BG2﹣DG2,用含x的代数式表示即可得到函数关系式,从而判断图象.注意自变量的范围是0<x≤6.【解答】解:延长EF与弦BC相交于点G∵点E、F是以线段BC为公共弦的两条圆弧的中点∴点G是弦BC的中点,即BG=GC,EG⊥BC又∵BD=x,BC=6,当D在BG上时,DG=3﹣x;当D在GC上时DG=x﹣3故有y=BG2﹣DG2=,即y=6x﹣x2,0≤x≤6.故选C.【点评】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.二、填空题.(本大题共6小题,每小题3分,共18分)11.上海世博会的主题馆与中国馆利用太阳能发电,年发电量可达2840000度.2840000用科学记数法可表示为2.8×106.(保留两个有效数字)【考点】科学记数法与有效数字.【专题】应用题.【分析】较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.【解答】解:2840000=2.84×106≈2.8×106.【点评】从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.12.若有意义,则x的取值范围是x≥﹣1.【考点】二次根式有意义的条件.【分析】二次根式的被开方数x+1是非负数.【解答】解:根据题意,得x+1≥0,解得,x≥﹣1;故答案是:x≥﹣1.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图所示.根据图中的信息,小张和小李两人中成绩较稳定的是小张.【考点】方差;折线统计图.【分析】观察图象可得:小张的成绩较集中,波动较小,即方差较小;故小张的成绩较为稳定.【解答】解:从图看出:小张的成绩波动较小,说明它的成绩较稳定.故填小张.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.分解因式:xy2﹣x=x(y﹣1)(y+1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i=,则AC的长度是240cm.【考点】解直角三角形的应用﹣坡度坡角问题.【专题】压轴题.【分析】过B作AC的垂线,根据坡面BC的坡度和铅直高度,可求出坡面BC的水平宽,进而可求出AC的长.【解答】解:过B作BD⊥AC于D,则AD=30+30=60.Rt△BCD中,tan∠BCD=i=,BD=60.∴CD=BD÷i=300,∴AC=CD﹣AD=240(cm).【点评】在坡度坡角问题中,需注意的是坡度是坡角的正切值,是坡面铅直高度和水平宽度的比.16.如图,长方体的底面边长分别为3cm和2cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.【考点】平面展开﹣最短路径问题.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:把长方体的侧表面展开得到一个长方形,高6cm,宽=2+3+2+3=10cm,AB为对角线.AB==2SHAPEcm.【点评】本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.三、解答题.(本大题共9小题,共92分)17.计算:【考点】实数的运算.【分析】本题涉及零指数幂、负指数幂、二次根式化简、特殊角的锐角三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:=2﹣+1﹣2=﹣1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.先化简,再求值:÷﹣,其中a=tan60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】化简原式时先将分子、分母因式分解,同时将除法转化为乘法,再约分,最后计算异分母分式的减法即可,将a=tan60°=代入化简所得分式求值可得.【解答】解:原式=•﹣=﹣=﹣==,当a=tan60°=时,原式===3.【点评】本题主要考查分式的化简求值能力,熟练掌握分式的混合运算顺序和运算法则是解题的关键.19.解不等式组,并在数轴上表示解集.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x<1,由②得,x<﹣3,故不等式组得解集为:x<﹣3.【点评】本题考查的是解一元一次不等式组,熟知不等式的基本性质是解答此题的关键.20.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【考点】矩形的判定;全等三角形的判定与性质;等腰三角形的性质;平行四边形的性质.【专题】证明题.【分析】(1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;(证法2:可根据AF平行且相等于DC,得出四边形ADCF是平行四边形,从而证得DE是△BCF的中位线,由此得出D是BC中点)(2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.【解答】(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,,∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC.即:D是BC的中点.(2)解:四边形ADCF是矩形;证明:∵AF=DC,AF∥DC,∴四边形ADCF是平行四边形.∵AB=AC,BD=DC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形.【点评】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.21.我市各学校九年级学生在体育测试前,都在积极训练自己的考试项目,王强就本班同学“自己选测的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有50名学生;(2)补全条形统计图;(3)在扇形统计图中,“排球”部分所对应的圆心角度数为115.2°;(4)若全校有360名学生,请计算出全校“其他”部分的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形图可知跳绳的人数是15人,所占比例为30%,即可求出总人数;(2)利用总人数以及跳远所占比例即可得出跳远的人数,即可得出其他人数,画出条形图即可;(3)根据条形图可知排球人数为16人,除以总人数乘以360°即可得出;(4)利用其他人数所占比例,估计总体即可.【解答】解:(1)15÷30%=50;(2)(3)16÷50×360°=115.2°;(4)360×(10÷50)=72名.【点评】此题主要考查了条形图与扇形图的综合应用,解决此类问题注意图形有机结合,综合分析获取正确信息,根据扇形图与条形图求出跳绳人数是解决问题的关键,22.为了美化学习环境,加强校园绿化建设,某校计划用不多于5200元的资金购买A、B两种树苗共60棵(可以是同一种树苗),加强校园绿化建设.若购买A种树苗x棵,所需总资金为y元,A、B两种树苗的相关信息如表:项目品种单价(元/棵)成活率A10098%B6090%(1)求y与x之间的函数关系式;(2)若要使得所购买树苗的成活率不低于95%,有几种选购方案?所用的资金分别是多少?【考点】一次函数的应用;一元一次不等式的应用.【专题】图表型.【分析】(1)总资金y=A树苗所需要的资金+B树苗所需要的资金;(2)关系式为:A种树木的成活数量+B种树木的成活数量≥树苗总数×95%,结合(1)中得到的自变量取值即可得到相应的选购方案及所用资金.【解答】解:(1)y=100x+60(60﹣x)=40x+3600100x+60(60﹣x)≤5200,解得x≤40,(∴0≤x≤40,且x为整数);(2)98%x+90%(60﹣x)≥95%×60,解得:,又∵x≤40,x是整数∴x=38、39、40.所以有三种购树苗方案:①购A种树苗38棵、B种树苗22棵,所用资金38×100+22×60=5120元;②购A种树苗39棵、B种树苗21棵,所用资金39×100+21×60=5160元;③购A种树苗40棵、B种树苗20棵,所用资金为40×100+20×60=5200元.【点评】考查一次函数的应用;根据成活率及总资金得到自变量的取值是解决本题的易错点.23.(12分)(2014•鄂城区校级模拟)为了参观上海世博会,某公司安排甲、乙两车分别从相距300千米的上海、泰州两地同时出发相向而行,甲到泰州带客后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)请直接写出甲离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(2)当它们行驶4.5小时后离各自出发点的距离相等,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,甲、乙两车从各自出发地驶出后经过多少时间相遇?【考点】一次函数的应用.【分析】(1)从0到3图象是正比例函数,从3小时后是一次函数,(2)当它们行驶4.5小时后离各自出发点的距离相等,写出两直线的交点,可以求出乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,(3)两车相遇,所走的路程为300,列出等量关系式,求得时间.【解答】解:(1)甲离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式为(2)由题意知,图中AB与OC的交点P的橫坐标为4.5,代入AB的解析式求得P点的纵坐标为180.得OC解析式为y=40x,当y=300时,.即乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式为.(3)由题意可知有两次相遇.①当0≤x≤3时,100x+40x=300,解得;②当时,(540﹣80x)+40x=300,解得x=6.综上所述,两车第一次相遇时间为出发后小时,第二次相遇时间为出发后6小时.【点评】能够根据题意中的等量关系建立函数关系式;能够根据函数解析式求得对应的x的值.24.已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(﹣,0),AC的延长线与⊙B的切线OD交于点D.(1)求OC的长和∠CAO的度数;(2)求过D点的反比例函数的表达式.【考点】反比例函数综合题.【专题】综合题;压轴题.【分析】(1)在直角三角形ACO中,根据已知条件可以求得OA,AC的长,再根据勾股定理求得OC的长,根据锐角三角函数的概念求得∠CAO的度数;(2)要求反比例函数的表达式,需要求得点D的坐标.作DE⊥x轴于点E,根据对顶角相等和弦切角定理可以求得∠DOE=60°.所以只需再求得OD的长,根据三角形的外角的性质可以求得∠ADO=30°.则OD=OA.从而求得OE,DE的长,再根据点D的坐标求得反比例函数的表达式.【解答】解:(1)∵∠AOC=90°,∴AC是⊙B的直径.∴AC=2.又∵点A的坐标为(﹣,0),∴OA=.∴.∴sin∠CAO=.∴∠CAO=30°;(2)如图,连接OB,过点D作DE⊥x轴于点E,∵OD为⊙B的切线,∴OB⊥OD.∴∠BOD=90°.∵AB=OB,∴∠AOB=∠OAB=30°.∴∠AOD=∠AOB+∠BOD=30°+90°=120°.在△AOD中,∠ODA=180°﹣120°﹣30°=30°=∠OAD.∴OD=OA=.在Rt△DOE中,∠DOE=180°﹣120°=60°,∴OE=OD•cos60°=OD=,ED=OD•sin60°=.∴点D的坐标为.设过D点的反比例函数的表达式为,∴.∴.【点评】此题主要是运用了30度的直角三角形的性质、切线的性质和等腰三角形的判定和性质,综合性较强

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论