版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京四中重点中学2023学年中考押题数学预测试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.下列条件中不能判定三角形全等的是()A.两角和其中一角的对边对应相等 B.三条边对应相等C.两边和它们的夹角对应相等 D.三个角对应相等2.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.125° B.75° C.65° D.55°3.国家主席在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为()A.0.34×107 B.3.4×106 C.3.4×105 D.34×1054.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.则正确的结论有()A.2个 B.3个 C.4个 D.5个5.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同6.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为()A. B. C. D.7.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为A.1 B. C. D.8.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.849.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A. B. C. D.10.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为()A. B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=()A.﹣1 B.4 C.﹣4 D.112.将多项式xy2﹣4xy+4y因式分解:_____.13.如果,那么=_____.14.当a=3时,代数式的值是______.15.方程的解是__________.16.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.三、解答题(共8题,共72分)17.(8分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况每人植树棵数78910人数36156表2:乙调查三个年级各10位同学植树情况每人植树棵数678910人数363126根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是棵;表2中的众数是棵;(2)你认为同学(填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?18.(8分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.(1)求直线的解析式;(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.19.(8分)已知A=ab(a-b)-ba(a-b).化简A;如果a、b20.(8分)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)与x轴交于A,B两(点A在点B左侧).(1)当抛物线过原点时,求实数a的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3)当AB≤4时,求实数a的取值范围.21.(8分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:,,)22.(10分)实践体验:(1)如图1:四边形ABCD是矩形,试在AD边上找一点P,使△BCP为等腰三角形;(2)如图2:矩形ABCD中,AB=13,AD=12,点E在AB边上,BE=3,点P是矩形ABCD内或边上一点,且PE=5,点Q是CD边上一点,求PQ得最值;问题解决:(3)如图3,四边形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值.23.(12分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=,AB=14,求线段PC的长.24.计算:()﹣2﹣+(﹣2)0+|2﹣|
2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、D【答案解析】
解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D.2、D【答案解析】
延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【题目详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°−∠1=180°−125°=55°.故答案选:D.【答案点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.3、B【答案解析】
解:3400000=.故选B.4、C【答案解析】
由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.【题目详解】解:由题意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此选项①正确;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;∵△AEF是等腰直角三角形,有EF:AF=:1,故此选项②正确;∵△AEF与△AHF不相似,∴AF2=FH·FE不正确.故此选项③错误,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此选项⑤正确.故选:C【答案点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.5、B【答案解析】
直接利用已知几何体分别得出三视图进而分析得出答案.【题目详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【答案点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.6、A【答案解析】
先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,则AF=4-=.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【题目详解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.过G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故选A.【答案点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.7、C【答案解析】作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN∧的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=∴PA+PB=PA′+PB=A′B=故选:C.8、B【答案解析】测试卷解析:该几何体是三棱柱.如图:由勾股定理全面积为:故该几何体的全面积等于1.故选B.9、B【答案解析】
根据简单概率的计算公式即可得解.【题目详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.10、A【答案解析】
根据题意设未知数,找到等量关系即可解题,见详解.【题目详解】解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20,购买甲、乙两种奖品共花费了650元,即40x+30y=650,综上方程组为,故选A.【答案点睛】本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【答案解析】
据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可.【题目详解】∵点A(a,3)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣3,∴a+b=1,故选D.【答案点睛】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.12、y(xy﹣4x+4)【答案解析】
直接提公因式y即可解答.【题目详解】xy2﹣4xy+4y=y(xy﹣4x+4).故答案为:y(xy﹣4x+4).【答案点睛】本题考查了因式分解——提公因式法,确定多项式xy2﹣4xy+4y的公因式为y是解决问题的关键.13、【答案解析】测试卷解析:设a=2t,b=3t,故答案为:14、1.【答案解析】
先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【题目详解】原式=÷=•=,当a=3时,原式==1,故答案为:1.【答案点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.15、.【答案解析】
根据解分式方程的步骤依次计算可得.【题目详解】解:去分母,得:,解得:,当时,,所以是原分式方程的解,故答案为:.【答案点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.16、630【答案解析】分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.详解:设甲车,乙车的速度分别为x千米/时,y千米/时,甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,乙车行驶900-720=180千米所需时间为180÷80=2.25小时,甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.所以甲车从B地向A地行驶了120×2.25=270千米,当乙车到达A地时,甲车离A地的距离为900-270=630千米.点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.三、解答题(共8题,共72分)17、(1)9,9;(2)乙;(3)1680棵;【答案解析】
(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.【题目详解】(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;故答案为:9,9;(2)乙同学所抽取的样本能更好反映此次植树活动情况;故答案为:乙;(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.【答案点睛】本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.18、(1)直线的解析式为:.(2)平移的时间为5秒.【答案解析】
(1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.【题目详解】(1)由题意得,∴点坐标为.∵在中,,,∴点的坐标为.设直线的解析式为,由过、两点,得,解得,∴直线的解析式为:.(2)如图,设平移秒后到处与第一次外切于点,与轴相切于点,连接,.则,∵轴,∴,在中,.∵,∴,∴(秒),∴平移的时间为5秒.【答案点睛】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.19、(1)a+bab【答案解析】
(1)先通分,再进行同分母的减法运算,然后约分得到原式=a+b(2)利用根与系数的关系得到a+b=【题目详解】解:(1)A==(a+b)(a-b)(2)∵a、b是方程x2∴a+b=4,ab=-1∴A=【答案点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=020、(1)a=;(2)①x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)a的范围为a<﹣2或a≥.【答案解析】
(1)把原点坐标代入y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把抛物线解析式配成顶点式,即可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设A(m,1),B(n,1),利用抛物线与x轴的交点问题,则m、n为方程ax2﹣4ax+3a﹣2=1的两根,利用判别式的意义解得a>1或a<﹣2,再利用根与系数的关系得到m+n=4,mn=,然后根据完全平方公式利用n﹣m≤4得到(m+n)2﹣4mn≤16,所以42﹣4•≤16,接着解关于a的不等式,最后确定a的范围.【题目详解】(1)把(1,1)代入y=ax2﹣4ax+3a﹣2得3a﹣2=1,解得a=;(2)①y=a(x﹣2)2﹣a﹣2,抛物线的对称轴为直线x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)设A(m,1),B(n,1),∵m、n为方程ax2﹣4ax+3a﹣2=1的两根,∴△=16a2﹣4a(3a﹣2)>1,解得a>1或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴42﹣4•≤16,即≥1,解得a≥或a<1.∴a的范围为a<﹣2或a≥.【答案点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠1)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21、改善后滑板会加长1.1米.【答案解析】
在Rt△ABC中,根据AB=4米,∠ABC=45°,求出AC的长度,然后在Rt△ADC中,解直角三角形求AD的长度,用AD-AB即可求出滑板加长的长度.【题目详解】解:在Rt△ABC中,AC=AB•sin45°=4×=,在Rt△ADC中,AD=2AC=,AD-AB=-4≈1.1.答:改善后滑板会加长1.1米.【答案点睛】本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.22、(1)见解析;(2)PQmin=7,PQmax=13;(3)Smin=,Smax=18.【答案解析】
(1)根据全等三角形判定定理求解即可.(2)以E为圆心,以5为半径画圆,①当E、P、Q三点共线时最PQ最小,②当P点在位置时PQ最大,分类讨论即可求解.(3)以E为圆心,以2为半径画圆,分类讨论出P点在位置时,四边形PADC面积的最值即可.【题目详解】(1)当P为AD中点时,,△BCP为等腰三角形.(2)以E为圆心,以5为半径画圆①当E、P、Q三点共线时最PQ最小,PQ的最小值是12-5=7.②当P点在位置时PQ最大,PQ的最大值是(3)以E为圆心,以2为半径画圆.当点p为位置时,四边形PADC面积最大.当点p为位置时,四边形PADC最小=四边形+三角形=.【答案点睛】本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业物联网技术应用指南
- 皮制公文包项目评价分析报告
- 健康保健项目营销推广计划书
- 企业级内容管理系统设计与部署
- 石锅相关项目建议书
- 企业国际化战略风险应对预案
- 人工智能辅助人力资源管理的研究与实施
- 人力资源绩效评估操作指南
- 专题4.4 光的折射【四大题型】【人教版2024】(原卷版)-2024-2025学年八年级上册物理举一反三系列(人教版2024)
- DB11T 1322.10-2017 安全生产等级评定技术规范 第10部分:木材加工企业
- 2024年新华师大版七年级上册数学教学课件 第1章 有理数 1.13 近似数
- 2024-2030年中国天然乳胶床垫行业市场发展趋势与前景展望战略分析报告
- 2024年硕士研究生招生考试思想政治理论考试大纲
- 家居保洁课件
- 2023-2024学年北京市西城外国语学校七年级(上)期中数学试卷【含解析】
- 知识图谱智慧树知到答案2024年浙江大学
- 服务基层行治疗(3.5.4消毒与灭菌工作管理)
- 中国蚕丝绸文化智慧树知到答案2024年浙江大学
- 六年级上册数学说课稿-二方向与位置(二)第2课时《用方向和距离确定某个点的位置》
- 2024版软件服务采购合同
- 短视频运营部门岗位职责说明及KPI绩效考核指标(抖音短视频运营团队KPI绩效考核体系)
评论
0/150
提交评论