版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选优质文档-----倾情为你奉上精选优质文档-----倾情为你奉上专心---专注---专业专心---专注---专业精选优质文档-----倾情为你奉上专心---专注---专业(专题精选)初中数学二次函数经典测试题附答案一、选择题1.若二次函数y=x2﹣2x+2在自变量x满足m≤x≤m+1时的最小值为6,则m的值为()A. B.C.1 D.【答案】B【解析】【分析】由抛物线解析式确定出其对称轴为x=1,分m>1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m的方程,可求得m的值.【详解】∵y=x2﹣2x+2=(x﹣1)2+1,∴抛物线开口向上,对称轴为x=1,当m>1时,可知当自变量x满足m≤x≤m+1时,y随x的增大而增大,∴当x=m时,y有最小值,∴m2﹣2m+2=6,解得m=1+或m=1﹣(舍去),当m+1<1时,可知当自变量x满足m≤x≤m+1时,y随x的增大而减小,∴当x=m+1时,y有最小值,∴(m+1)2﹣2(m+1)+2=6,解得m=(舍去)或m=﹣,综上可知m的值为1+或﹣.故选B.【点睛】本题主要考查二次函数的性质,用m表示出其最小值是解题的关键.2.对于二次函数,下列说法正确的个数是()①对于任何满足条件的,该二次函数的图象都经过点和两点;②若该函数图象的对称轴为直线,则必有;③当时,随的增大而增大;④若,是函数图象上的两点,如果总成立,则.A.1个 B.2个 C.3个 D.4个【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】对于当时,,则二次函数的图象都经过点当时,,则二次函数的图象都经过点则说法①正确此二次函数的对称轴为,则说法②错误由二次函数的性质可知,抛物线的开口向下,当时,y随x的增大而增大;当时,y随x的增大而减小因则当时,y随x的增大而增大;当时,y随x的增大而减小即说法③错误由总成立得,其对称轴解得,则说法④正确综上,说法正确的个数是2个故选:B.【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.3.已知抛物线与轴的一个交点坐标为,其部分图象如图所示,下列结论:①抛物线一定过原点;②方程的解为或4;③;④当时,;⑤当时,随增大而增大.其中结论正确的个数有()A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,求得,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断.【详解】由题可知,与轴的一个交点坐标为,则另一个交点坐标为,故可得,,故可得①因为,故①正确;②因为二次函数过点,故②正确;③当时,函数值为,故③正确;④由图可知,当时,,故④正确;⑤由图可知,当时,随增大而减小,故⑤错误;故选:D.【点睛】本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.4.二次函数的图象如图所示,下列结论①,②,③,④.其中正确的是()A.①④ B.②④ C.②③ D.①②③④【答案】A【解析】【分析】①抛物线与x轴由两个交点,则,即,所以①正确;②由二次函数图象可知,,,,所以,故②错误;③对称轴:直线,,所以,,故③错误;④对称轴为直线,抛物线与x轴一个交点,则抛物线与x轴另一个交点,当时,,故④正确.【详解】解:①∵抛物线与x轴由两个交点,∴,即,所以①正确;②由二次函数图象可知,,,,∴,故②错误;③∵对称轴:直线,∴,∴,∵,,,,∴,故③错误;④∵对称轴为直线,抛物线与x轴一个交点,∴抛物线与x轴另一个交点,当时,,故④正确.故选:A.【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.5.要将抛物线平移后得到抛物线,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位 B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位 D.向右平移1个单位,再向下平移2个单位【答案】A【解析】【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x2向左平移1个单位长度,再向上平移2个单位长度.故选:A.【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.6.方程的根可视为函数的图象与函数的图象交点的横坐标,则方程的实根x0所在的范围是()A. B. C. D.【答案】C【解析】【分析】首先根据题意推断方程x3+2x-1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x-1=0的实根x所在范围.【详解】解:依题意得方程的实根是函数与的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=时,,,此时抛物线的图象在反比例函数下方;当x=时,,,此时抛物线的图象在反比例函数下方;当x=时,,,此时抛物线的图象在反比例函数上方;当x=1时,,,此时抛物线的图象在反比例函数上方.∴方程的实根x0所在范围为:.故选C.【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.7.如图,二次函数的图象如图所示,则一次函数和反比例函数在同平面直角坐标系中的图象大致是()A. B. C. D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b,c的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax2+bx+c的图象开口向下,∴a<0,∵二次函数y=ax2+bx+c的图象经过原点,∴c=0,∵二次函数y=ax2+bx+c的图象对称轴在y轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.8.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m,则新数为,设新数与原数的差为y则,易得,当m=0时,y=0,则A错误∵当时,y有最大值.则B错误,D正确.当y=21时,=21解得=30,=70,则C错误.故答案选:D.【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.9.函数,当与时函数值相等,则时,函数值等于()A.5 B. C. D.-5【答案】A【解析】【分析】根据二次函数的对称性,求得函数的对称轴,进而判断与的函数值相等时的值,由此可得结果.【详解】∵函数,当与时函数值相等,∴函数的对称轴为:,∴与的函数值相等,∴当时,,即时,函数值等于,故选:.【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.10.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线.不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.11.某二次函数图象的顶点为,与轴交于、两点,且.若此函数图象通过、、、四点,则、、、之值何者为正?()A. B. C. D.【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x轴的交点坐标,从而可以判断a、b、c、d的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x轴相交于P、Q两点,且PQ=6,∴该函数图象开口向上,对称轴为直线x=2,∴图形与x轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a)、(3,b)、(-1,c)、(-3,d)四点,∴a<0,b<0,c=0,d>0,故选:D.【点睛】此题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.12.四位同学在研究函数(是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲 B.乙 C.丙 D.丁【答案】B【解析】【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论.【详解】解:A.假设甲同学的结论错误,则乙、丙、丁的结论都正确由乙、丁同学的结论可得解得:∴二次函数的解析式为:∴当x=时,y的最小值为,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B.假设乙同学的结论错误,则甲、丙、丁的结论都正确由甲、丙的结论可得二次函数解析式为当x=2时,解得y=4,当x=-1时,y=7≠0∴此时符合假设条件,故本选项符合题意;C.假设丙同学的结论错误,则甲、乙、丁的结论都正确由甲乙的结论可得解得:∴当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意;D.假设丁同学的结论错误,则甲、乙、丙的结论都正确由甲、丙的结论可得二次函数解析式为当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意.故选B.【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b、c的值是解决此题的关键.13.已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),则下列说法错误的是()A.a+c=0B.无论a取何值,此二次函数图象与x轴必有两个交点,且函数图象截x轴所得的线段长度必大于2C.当函数在x<时,y随x的增大而减小D.当﹣1<m<n<0时,m+n<【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M(﹣1,2)和点N(1,﹣2),∴a﹣b+c=2,a+b+c=﹣2,∴a+c=0,b=﹣2,∴A正确;∵c=﹣a,b=﹣2,∴y=ax2﹣2x﹣a,∴△=4+4a2>0,∴无论a为何值,函数图象与x轴必有两个交点,∵x1+x2=,x1x2=﹣1,∴|x1﹣x2|=2>2,∴B正确;二次函数y=ax2+bx+c(a>0)的对称轴x=﹣=,当a>0时,不能判定x<时,y随x的增大而减小;∴C错误;∵﹣1<m<n<0,a>0,∴m+n<0,>0,∴m+n<;∴D正确,故选:C.【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.14.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个【答案】B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系15.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5 B.﹣5<t<3 C.3<t≤4 D.﹣5<t≤4【答案】D【解析】【分析】先根据对称轴x=2求得m的值,然后求得x=1和x=5时y的值,最后根据图形的特点,得出直线y=t在直线y=﹣5和直线y=4之间包括直线y=4.【详解】∵抛物线的对称轴为x=2,∴,m=4如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x轴(或某直线)有交点.16.函数在同一直角坐标系内的图象大致是()A. B. C. D.【答案】C【解析】【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选C.17.已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论中正确的是()A.ac>0 B.b>0 C.a+c<0 D.a+b+c=0【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a<0,c>0,∴ac<0,故A错误;B.由对称轴可知:x=<0,∴b<0,故B错误;C.由对称轴可知:x==﹣1,∴b=2a,∵x=1时,y=0,∴a+b+c=0,∴c=﹣3a,∴a+c=a﹣3a=﹣2a>0,故C错误;故选D.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.18.如图1,△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A→C→B运动,点Q从点A出发以vcm/s的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示,有下列结论:①v=1;②sinB=;③图象C2段的函数表达式为y=﹣x2+x;④△APQ面积的最大值为8,其中正确有()A.①② B.①②④ C.①③④ D.①②③④【答案】A【解析】【分析】①根据题意列出y=AP•AQ•sinA,即可解答②根据图像可知PQ同时到达B,则AB=5,AC+CB=10,再代入即可③把sinB=,代入解析式即可④根据题意可知当x=﹣时,y最大=【详解】①当点P在AC上运动时,y=AP•AQ•sinA=×2x•vx=vx2,当x=1,y=时,得v=1,故此选项正确;②由图象可知,PQ同时到达B,则AB=5,AC+CB=10,当P在BC上时y=•x•(10﹣2x)•sinB,当x=4,y=时,代入解得sinB=,故此选项正确;③∵sinB=,∴当P在BC上时y=•x(10﹣2x)×=﹣x2+x,∴图象C2段的函数表达式为y=﹣x2+x,故此选项不正确;④∵y=﹣x2+x,∴当x=﹣时,y最大=,故此选项不正确;故选A.【点睛】此题考查了二次函数的运用,解题关键在于看图理解19.在同一平面直角坐标系中,函数与的图象可能是()A. B.C. D.【答案】C【解析】【分析】根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a>0,因此二次函数图像开口向上,但对称轴应在y轴左侧,故此选项错误;B.由一次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流公司服务台管理规范
- 城市绿化项目施工合同台账
- 样本解约合同
- 印刷包装厂房租赁
- 国际物流交流:微信群管理办法
- 舞蹈编排大赛代理协议
- 2024年快递物流服务代理协议
- 网络硬盘系统服务器租赁合同
- 环保工程仓库施工合同范本
- 体育赛事纪念品店租赁协议
- 岩浆岩及变质岩
- 肺爆震伤-PPT课件
- JIS G3141-2021 冷轧钢板及钢带标准
- 苏霍姆林斯基教育思想-PPT课件
- 《中国音乐发展简史》PPT课件
- 药物设计学:第三章_基于性质的药物设计
- 中国四大菜系(英语版)ppt
- XX老干部活动中心可行性研究报告
- 广东中考英语重点难点教材梳理
- 第三章 农产品市场与价格zyx
- 新能源汽车简介PPT课件:节能减排低碳环保
评论
0/150
提交评论