2022-2023学年吉林省长春市九年级数学第一学期期末统考试题含解析_第1页
2022-2023学年吉林省长春市九年级数学第一学期期末统考试题含解析_第2页
2022-2023学年吉林省长春市九年级数学第一学期期末统考试题含解析_第3页
2022-2023学年吉林省长春市九年级数学第一学期期末统考试题含解析_第4页
2022-2023学年吉林省长春市九年级数学第一学期期末统考试题含解析_第5页
免费预览已结束,剩余24页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知关于的方程(1)(2)(3)(4),其中一元二次方程的个数为()个.A.1 B.2 C.3 D.42.某商品原价格为100元,连续两次上涨,每次涨幅10%,则该商品两次上涨后的价格为()A.121元 B.110元 C.120元 D.81元3.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.114.将抛物线先向上平移3个单位长度,再向右平移1个单位长度可得抛物线()A. B.C. D.5.在正方形网格中,△ABC的位置如图所示,则cos∠B的值为(

)A. B. C. D.16.如图,与相似,且,则下列比例式中正确的是()A. B. C. D.7.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个 B.2个 C.3个 D.4个8.如图,在中,,,,点在边上,且,点为边上的动点,将沿直线翻折,点落在点处,则点到边距离的最小值是()A.3.2 B.2 C.1.2 D.19.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3 C.4 D.510.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高(点在同一条直线上).已知小明身高是,则楼高为()A. B. C. D.二、填空题(每小题3分,共24分)11.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是_____________.12.如图,矩形中,,,是边上的一点,且,点在矩形所在的平面中,且,则的最大值是_________.13.如图,已知矩形ABCD的两条边AB=1,AD=,以B为旋转中心,将对角线BD顺时针旋转60°得到线段BE,再以C为圆心将线段CD顺时针旋转90°得到线段CF,连接EF,则图中阴影部分面积为_____.14.如图,矩形ABCD中,AB=4,BC=6,E是边AD的中点,将△ABE折叠后得到△A′BE,延长BA′交CD于点F,则DF的长为______.15.若二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).则S=a+b+c的值的变化范围是_____.16.若一元二次方程的两根为,,则__________.17.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为_____.18.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是.三、解答题(共66分)19.(10分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;20.(6分)如图,为了估算河的宽度,我们可以在河对岸选定一点,再在河的这一边选定点和点,使得,然后选定点,使,确定与的交点,若测得米,米,米,请你求出小河的宽度是多少米?21.(6分)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分别以AB、AC为对称轴翻折变换,D点的对称点为E、F,延长EB、FC相交于G点.(1)求证:四边形AEGF是正方形;(2)求AD的长.22.(8分)解方程:(1)x2﹣2x﹣1=0(2)2(x﹣3)=3x(x﹣3)23.(8分)一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形的边长为4,E为的中点,,连结.,求证:为四边形的相似对角线.(2)在四边形中,,,,平分,且是四边形的相似对角线,求的长.(3)如图2,在矩形中,,,点E是线段(不取端点A.B)上的一个动点,点F是射线上的一个动点,若是四边形的相似对角线,求的长.(直接写出答案)24.(8分)如图1,抛物线y=﹣x2+bx+c的对称轴为直线x=﹣,与x轴交于点A和点B(1,0),与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.(1)求抛物线的解析式;(2)点P是直线BE上方抛物线上一动点,连接PD、PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.(3)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以A、M、N、K为顶点的四边形是正方形时,请求出点N的坐标.25.(10分)(1)(问题发现)如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.26.(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=1.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据一元二次方程的定义逐项判断即可.【详解】解:(1)ax2+x+1=0中a可能为0,故不是一元二次方程;(2)符合一元二次方程的定义,故是一元二次方程;(3),去括号合并后为,是一元二次方程;(4)x2=0,符合一元二次方程的定义,是一元二次方程;所以是一元二次方程的有三个,

故选:C.【点睛】本题主要考查一元二次方程的定义,即只含有一个未知数且未知数的次数为2的整式方程,注意如果是字母系数的方程必须满足二次项的系数不等于0才可以.2、A【分析】依次列出每次涨价后的价格即可得到答案.【详解】第一次涨价后的价格为:,第二次涨价后的价格为:121(元),故选:A.【点睛】此题考查代数式的列式计算,正确理解题意是解题的关键.3、A【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:

110°•(n-2)=3×360°

解得n=1.

故选A.点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4、A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【详解】平移后的抛物线为故答案为A.【点睛】此题主要考查抛物线平移的性质,熟练掌握,即可解题.5、A【解析】作AD⊥BC,可得AD=BD=5,利用勾股定理求得AB,再由余弦函数的定义求解.【详解】作AD⊥BC于点D,则AD=5,BD=5,∴AB===5,∴cos∠B===.故选A.【点睛】本题考查锐角三角函数的定义.6、D【分析】利用相似三角形性质:对应角相等、对应边成比例,可得结论.【详解】由题意可得,,所以,故选D.【点睛】在书写两个三角形相似时,注意顶点的位置要对应,即若,则说明点A的对应点为点,点B的对应点,点C的对应点为点.7、B【分析】根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.8、C【分析】先依据勾股定理求得AB的长,然后依据翻折的性质可知PF=FC,故此点P在以F为圆心,以1为半径的圆上,依据垂线段最短可知当FP⊥AB时,点P到AB的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.【详解】如图所示:当PE∥AB.在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB==10,由翻折的性质可知:PF=FC=1,∠FPE=∠C=90°.∵PE∥AB,∴∠PDB=90°.由垂线段最短可知此时FD有最小值.又∵FP为定值,∴PD有最小值.又∵∠A=∠A,∠ACB=∠ADF,∴△AFD∽△ABC.∴,即,解得:DF=2.1.∴PD=DF-FP=2.1-1=1.1.故选:C.【点睛】本题考查翻折变换,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题9、D【解析】设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=1.故选D.10、B【分析】过点C作CN⊥AB,可得四边形CDME、ACDN是矩形,即可证明,从而得出AN,进而求得AB的长.【详解】过点C作CN⊥AB,垂足为N,交EF于M点,

∴四边形CDEM、BDCN是矩形,

∴,

∴,依题意知,EF∥AB,

∴,

∴,即:,

∴AN=20,

(米),

答:楼高为21.2米.

故选:B.【点睛】本题主要考查了相似三角形的应用,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.二、填空题(每小题3分,共24分)11、【分析】画树状图展示所有9种等可能的结果数,再找出两人随机同时出手一次,做同样手势的结果数,然后根据概率公式求解.【详解】画树状图为:

共有9种等可能的结果数,其中两人随机同时出手一次,做同样手势的结果数为3,

故两人一起做同样手势的概率是的概率为.故答案为:.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.12、5+.【分析】由四边形是矩形得到内接于,利用勾股定理求出直径BD的长,由确定点P在上,连接MO并延长,交于一点即为点P,此时PM最长,利用勾股定理求出OM,再加上OP即可得到PM的最大值.【详解】连接BD,∵四边形ABCD是矩形,∴∠BAD=∠BCD=90,AD=BC=8,∴BD=10,以BD的中点O为圆心5为半径作,∵,∴点P在上,连接MO并延长,交于一点即为点P,此时PM最长,且OP=5,过点O作OH⊥AD于点H,∴AH=AD=4,∵AM=2,∴MH=2,∵点O、H分别为BD、AD的中点,∴OH为△ABD的中位线,∴OH=AB=3,∴OM=,∴PM=OP+OM=5+.故答案为:5+.【点睛】此题考查矩形的性质,勾股定理,圆内接四边形的性质,确定PM的位置是重点,再分段求出OM及OP的长,即可进行计算.13、【分析】矩形ABCD的两条边AB=1,AD=,得到∠DBC=30°,由旋转的性质得到BD=BE,∠BDE=60°,求得∠CBE=∠DBC=30°,连接CE,根据全等三角形的性质得到∠BCE=∠BCD=90°,推出D,C,E三点共线,得到CE=CD=1,根据三角形和扇形的面积公式即可得到结论.【详解】∵矩形ABCD的两条边AB=1,AD=,∴,∴∠DBC=30°,∵将对角线BD顺时针旋转60°得到线段BE,∴BD=BE,∠BDE=60°,∴∠CBE=∠DBC=30°,连接CE,∴△DBC≌△EBC(SAS),∴∠BCE=∠BCD=90°,∴D,C,E三点共线,∴CE=CD=1,∴图中阴影部分面积=S△BEF+S△BCD+S扇形DCF﹣S扇形DBE=+﹣=,故答案为:.【点睛】本题考查了旋转的性质,解直角三角形,矩形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.14、【分析】根据点E是AD的中点以及翻折的性质可以求出AE=DE=EA',然后利用“HL”证明△EDF和△EA'F全等,根据全等三角形对应边相等可证得DF=A'F;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列方程即可得解.【详解】∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△A'BE,∴AE=EA',AB=BA',∴ED=EA',∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EA'F=90°,∵在Rt△EDF和Rt△EA'F中,∵,∴Rt△EDF≌Rt△EA'F(HL),∴DF=FA',设DF=x,则BF=4+x,CF=4﹣x,在Rt△BCF中,62+(4﹣x)2=(4+x)2,解得:x=.故答案为:.【点睛】本题主要考查折叠的性质与勾股定理,利用勾股定理列出方程,是解题的关键.15、1<S<2【分析】将已知两点坐标代入二次函数解析式,得出c的值及a、b的关系式,代入S=a+b+c中消元,再根据对称轴的位置判断S的取值范围即可.【详解】解:将点(1,1)和(﹣1,1)分别代入抛物线解析式,得c=1,a=b﹣1,∴S=a+b+c=2b,由题设知,对称轴x=且,∴2b>1.又由b=a+1及a<1可知2b=2a+2<2.∴1<S<2.故答案为:1<S<2.【点睛】本题考查了二次函数图象上点的坐标特点,运用了消元法的思想,对称轴的性质,需要灵活运用这些性质解题.16、4【分析】利用韦达定理计算即可得出答案.【详解】根据题意可得:故答案为4.【点睛】本题考查的是一元二次方程根与系数的关系,若和是方程的两个解,则.17、1:1.【解析】试题分析:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:1.考点:相似三角形的性质.18、.【详解】解:由题意作出树状图如下:一共有36种情况,“两枚骰子朝上的点数互不相同”有30种,所以,P=.考点:列表法与树状图法.三、解答题(共66分)19、(1)y=x2﹣x﹣6;(2)点D的坐标为(,﹣5);(3)△BCE的面积有最大值,点E坐标为(,﹣).【分析】(1)先求出点A,C的坐标,再将其代入y=x2+bx+c即可;(2)先确定BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,求出直线BC的解析式,再求出其与对称轴的交点即可;(3)如图2,连接OE,设点E(a,a2﹣a﹣6),由式子S△BCE=S△OCE+S△OBE﹣S△OBC即可求出△BCE的面积S与a的函数关系式,由二次函数的图象及性质可求出△BCE的面积最大值,并可写出此时点E坐标.【详解】解:(1)∵OA=2,OC=6,∴A(﹣2,0),C(0,﹣6),将A(﹣2,0),C(0,﹣6)代入y=x2+bx+c,得,解得,b=﹣1,c=﹣6,∴抛物线的解析式为:y=x2﹣x﹣6;(2)在y=x2﹣x﹣6中,对称轴为直线x=,∵点A与点B关于对称轴x=对称,∴如图1,可设BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,在y=x2﹣x﹣6中,当y=0时,x1=﹣2,x2=3,∴点B的坐标为(3,0),设直线BC的解析式为y=kx﹣6,将点B(3,0)代入,得,k=2,∴直线BC的解析式为y=2x﹣6,当x=时,y=﹣5,∴点D的坐标为(,﹣5);(3)如图2,连接OE,设点E(a,a2﹣a﹣6),S△BCE=S△OCE+S△OBE﹣S△OBC=×6a+×3(﹣a2+a+6)﹣×3×6=﹣a2+a=﹣(a﹣)2+,根据二次函数的图象及性质可知,当a=时,△BCE的面积有最大值,当a=时,∴此时点E坐标为(,﹣).【点睛】本题考查的是二次函数的综合,难度适中,第三问解题关键是找出面积与a的关系式,再利用二次函数的图像与性质求最值.20、小河的宽度是210米.【分析】先证明△ABD∽△ECD,然后利用相似比计算出AB即可得到小河的宽度.【详解】∵,,∴,∴,∴,即,∴.答:小河的宽度是210米.【点睛】本题考查了相似三角形的应用:利用相似测量河的宽度(测量距离).①测量原理:测量不能直接到达的两点间的距离,常常构造“A”型或“X”型相似图,三点应在一条直线上.必须保证在一条直线上,为了使问题简便,尽量构造直角三角形.②测量方法:通过测量便于测量的线段,利用三角形相似,对应边成比例可求出河的宽度.21、(1)见解析;(2)AD=1;【分析】(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;(2)利用勾股定理,建立关于x的方程模型(x﹣2)2+(x﹣3)2=52,求出AD=x=1.【详解】(1)证明:由翻折的性质可得,△ABD≌△ABE,△ACD≌△ACF,∴∠DAB=∠EAB,∠DAC=∠FAC,∵∠BAC=45°,∴∠EAF=90°,∵AD⊥BC,∴∠E=∠ADB=90°,∠F=∠ADC=90°,∴四边形AEGF为矩形,∵AE=AD,AF=AD,∴AE=AF,∴矩形AEGF是正方形;(2)解:根据对称的性质可得:BE=BD=2,CF=CD=3,设AD=x,则正方形AEGF的边长是x,则BG=EG﹣BE=x﹣2,CG=FG﹣CF=x﹣3,在Rt△BCG中,根据勾股定理可得:(x﹣2)2+(x﹣3)2=52,解得:x=1或x=﹣1(舍去).∴AD=x=1;【点睛】本题考查了翻折对称的性质,全等三角形和勾股定理,以及正方形的判定,解本题的关键是熟练掌握翻折变换的性质:翻折前后图形的对应边或对应角相等;有四个角是直角的四边形是矩形,有一组邻边相等的矩形是正方形.22、(1),(2)或【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得;【详解】(1)a=1,b=﹣2,c=﹣1,△=b2﹣4ac=4+4=8>0,方程有两个不相等的实数根,,∴;(2),移项得:,因式分解得:=0,∴或,解得:或.【点睛】本题主要考查了解一元二次方程-配方法和因式分解法,根据方程的不同形式,选择合适的方法是解题的关键.23、(1)见解析(2)或;(1)或或1【分析】(1)根据已知中相似对角线的定义,只要证明△AEF∽△ECF即可;

(2)AC是四边形ABCD的相似对角线,分两种情形:△ACB△ACD或△ACB△ADC,分别求解即可;

(1)分三种情况①当△AEF和△CEF关于EF对称时,EF是四边形AECF的相似对角线.②取AD中点F,连接CF,将△CFD沿CF翻折得到△CFD′,延长CD′交AB于E,则可得出EF是四边形AECF的相似对角线.③取AB的中点E,连接CE,作EF⊥AD于F,延长CB交FE的延长线于M,则可证出EF是四边形AECF的相似对角线.此时BE=1;【详解】解:(1)∵四边形ABCD是正方形,

∴AB=BC=CD=AD=4,

∵E为的中点,,∴AE=DE=2,∵∠A=∠D=90°,

∴△AEF∽△DCE,

∴∠AEF=∠DCE,∵∠DCE+∠CED=90°,

∴∠AEF+∠CED=90°,

∴∠FEC=∠A=90°,∴△AEF∽△ECF,

∴EF为四边形AECF的相似对角线.(2)∵平分,∴∠BAC=∠DAC=60°∵AC是四边形ABCD的相似对角线,

∴△ACB△ACD或△ACB△ADC

①如图2,当△ACB△ACD时,此时,△ACB≌△ACD∴AB=AD=1,BC=CD,

∴AC垂直平分DB,

在Rt△AOB中,∵AB=1,∠ABO=10°,②当△ACB△ADC时,如图1∴∠ABC=∠ACD∴AC2=AB•AD,

∵,∴6=1AD,

∴AD=2,

过点D作DHAB于H在Rt△ADH中,∵∠HAD=60°,AD=2,在Rt△BDH中,综上所述,的长为:或(1)①如图4,当△AEF和△CEF关于EF对称时,EF是四边形AECF的相似对角线,

设AE=EC=x,

在Rt△BCE中,∵EC2=BE2+BC2,

∴x2=(6-x)2+42,

解得x=,

∴BE=AB-AE=6-=.

②如图5中,如图取AD中点F,连接CF,将△CFD沿CF翻折得到△CFD′,延长CD′交AB于E,则EF是四边形AECF的相似对角线.

∵△AEF∽△DFC,∴③如图6,取AB的中点E,连接CE,作EF⊥AD于F,延长CB交FE的延长线于M,则EF是四边形AECF的相似对角线.则BE=1.

综上所述,满足条件的BE的值为或或1.【点睛】本题主要考查了相似形的综合题、相似三角形的判定和性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.24、(1)y=﹣x2+﹣x+2;(2);(3)N点的坐标为:或()或(﹣)或(﹣)或(﹣)或或(﹣)【分析】(1)根据对称轴公式列出等式,带点到抛物线列出等式,解出即可;(2)先求出A、B、C的坐标,从而求出D的坐标算出BD的解析式,根据题意画出图形,设出P、G的坐标代入三角形的面积公式得出一元二次方程,联立方程组解出即可;(3)分类讨论①当AM是正方形的边时,(ⅰ)当点M在y轴左侧时(N在下方),(ⅱ)当点M在y轴右侧时,②当AM是正方形的对角线时,分别求出结果综合即可.【详解】(1)抛物线y=﹣x2+bx+c的对称轴为直线x=﹣,与x轴交于点B(1,0).∴,解得,∴抛物线的解析式为:y=﹣x2+﹣x+2;(2)抛物线y=﹣x2﹣x+2与x轴交于点A和点B,与y轴交于点C,∴A(﹣1,0),B(1,0),C(0,2).∵点D为线段AC的中点,∴D(﹣2,1),∴直线BD的解析式为:,过点P作y轴的平行线交直线EF于点G,如图1,设点P(x,),则点G(x,).∴,当x=﹣时,S最大,即点P(﹣,),过点E作x轴的平行线交PG于点H,则tan∠EBA=tan∠HEG=,∴,故为最小值,即点G为所求.联立解得,(舍去),故点E(﹣,),则PG﹣的最小值为PH=.(3)①当AM是正方形的边时,(ⅰ)当点M在y轴左侧时(N在下方),如图2,当点M在第二象限时,过点A作y轴的平行线GH,过点M作MG⊥GH于点G,过点N作HN⊥GH于点H,∴∠GMA+∠GAM=90°,∠GAM+∠HAN=90°,∴∠GMA=∠HAN,∵∠AGM=∠NHA=90°,AM=AN,∴△AGM≌△NHA(AAS),∴GA=NH=1﹣,AH=GM,即y=﹣,解得x=,当x=时,GM=x﹣(﹣1)=,yN=﹣AH=﹣GM=,∴N(,).当x=时,同理可得N(,),当点M在第三象限时,同理可得N(,).(ⅱ)当点M在y轴右侧时,如图3,点M在第一象限时,过点M作MH⊥x轴于点H设AH=b,同理△AHM≌△MGN(AAS),则点M(﹣1+b,b﹣).将点M的坐标代入抛物线解析式可得:b=(负值舍去)yN=yM+GM=yM+AH=,∴N(﹣,).当点M在第四象限时,同理可得N(﹣,-).②当AM是正方形的对角线时,当点M在y轴左侧时,过点M作MG⊥对称轴于点G,设对称轴与x轴交于点H,如图1.∵∠AHN=∠MGN=90°,∠NAH=∠MNG,MN=AN,∴△AHN≌△NGN(AAS),设点N(﹣,π),则点M(﹣,),将点M的坐标代入抛物线解析式可得,(舍去),∴N(,),当点M在y轴右侧时,同理可得N(,).综上所述:N点的坐标为:或()或(﹣)或(﹣)或(﹣)或或(﹣).【点睛】本题考查二次函数与一次函数的综合题型,关键在于熟练掌握设数法,合理利用相似全等等基础知识.25、(1)BE=AF;(2)无变化;(3)﹣1或+1.【解析】(1)先利用等腰直角三角形的性质得出AD=,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出,同理得出,夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=﹣,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.【详解】解:(1)在Rt△ABC中,AB=AC=2,根据勾股定理得,BC=AB=2,点D为BC的中点,∴AD=BC=,∵四边形CDEF是正方形,∴AF=EF=AD=,∵BE=AB=2,∴BE=AF,故答案为BE=AF;(2)无变化;如图2,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,在正方形CDEF中,∠FEC=∠FED=45°,在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴=,∴BE=AF,∴线段BE与AF的数量关系无变化;(3)当点E在线段AF上时,如图2,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根据勾股定理得,BF=,∴BE=BF﹣EF=﹣,由(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论