2022-2023学年浙江省温州市永嘉县数学八年级上册期末学业质量监测模拟试题含解析_第1页
2022-2023学年浙江省温州市永嘉县数学八年级上册期末学业质量监测模拟试题含解析_第2页
2022-2023学年浙江省温州市永嘉县数学八年级上册期末学业质量监测模拟试题含解析_第3页
2022-2023学年浙江省温州市永嘉县数学八年级上册期末学业质量监测模拟试题含解析_第4页
2022-2023学年浙江省温州市永嘉县数学八年级上册期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤2.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A的坐标是(a,b),经过第2019次变换后所得的点A的坐标是()A.(﹣a,b) B.(﹣a,﹣b) C.(a,﹣b) D.(a,b)3.下列运算:,,,其中结果正确的个数为()A.1 B.2 C.3 D.44.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=15.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.长度分别为3,7,a的三条线段能组成一个三角形,则a的值可以是()A.3 B.4 C.6 D.107.如果点P在第二象限,那么点Q在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.点,都在直线上,则与的大小关系是()A. B. C. D.不能确定9.若点、在直线上,且,则该直线所经过的象限是()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第四象限10.如图,△ABO关于x轴对称,若点A的坐标为(a,b),则点B的坐标为()A.(b,a) B.(﹣a,b) C.(a,﹣b) D.(﹣a,﹣b)二、填空题(每小题3分,共24分)11.如图,点B,A,D,E在同一条直线上,AB=DE,BC∥EF,请你利用“ASA”添加一个条件,使△ABC≌△DEF,你添加的条件是_____.12.如图,图①是一块边长为1,周长记为的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的)后,得图③,④,…,记第块纸板的周长为,则=_____.13.已知,那么的值是________.14.如图,△ABE和△ACD是△ABC分别沿着AB、AC翻折而成的,若∠1=140°,∠2=25°,则∠α度数为______.15.分解因式:x3﹣2x2+x=______.16.分解因式:2a2-4ab+2b2=________.17.如果正方形的边长为4,为边上一点,,为线段上一点,射线交正方形的一边于点,且,那么的长为__________.18.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于_____.三、解答题(共66分)19.(10分)化简求值:,其中,x=2+.20.(6分)如图,已知△ABC的其中两个顶点分别为:A(-4,1)、B(-2,4).(1)请根据题意,在图中建立平面直角坐标系,并写出点C的坐标;(2)若△ABC每个点的横坐标保持不变,纵坐标分别乘-1,顺次连接这些点,得到△A1B1C1,画出△A1B1C1,判断△A1B1C1与△ABC有怎样的位置关系?并写出点B的对应点B1的坐标.21.(6分)如图,正方形是由两个小正方形和两个小长方形组成的,根据图形解答下列问题:(1)请用两种不同的方法表示正方形的面积,并写成一个等式;(2)运用(1)中的等式,解决以下问题:①已知,,求的值;②已知,,求的值.22.(8分)已知,,求下列代数式的值.(1)(2)23.(8分)如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.(1)分别求出这两个函数的解析式;(2)求的面积;(3)点在轴上,且是等腰三角形,请直接写出点的坐标.24.(8分)计算:(1)(2)分解因式(3)解分式方程25.(10分)(1)计算:;(2)分解因式:.26.(10分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:①、MN=AB,所以MN的长度不变;②、周长C△PAB=(AB+PA+PB),变化;③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线2、A【分析】观察图形,可知每四次对称为一个循环组依次循环,用2019除以4,然后根据商和余数的情况,确定变换后点A所在的象限,即可求解.【详解】解:点A第一次关于x轴对称后在第四象限,点A第二次关于y轴对称后在第三象限,点A第三次关于x轴对称后在第二象限,点A第四次关于y轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2019÷4=504余3,∴经过第2019次变换后所得的A点与第三次变换的位置相同,在第二象限,坐标为(﹣a,b).故选:A.【点睛】本题考查了轴对称的性质,点的坐标变换规律,认真读题找出每四次对称为一个循环组来解题是本题的关键.3、B【分析】由题意根据同底数幂的除法与乘法、幂的乘方和积的乘方,依次对选项进行判断即可.【详解】解:,故计算错误;,故计算正确;,故计算错误;,故计算正确;正确的共2个,故选:B.【点睛】本题考查同底数幂的除法与乘法、幂的乘方和积的乘方问题,关键是根据同底数幂的除法与乘法以及幂的乘方和积的乘方的法则进行分析.4、B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.5、D【解析】分析:直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.详解:∵点A(a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a<-1,b>2,则-a>1,1-b<-1,故点B(-a,1-b)在第四象限.故选D.点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.6、C【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.【详解】解:7−3<x<7+3,即4<x<10,只有选项C符合题意,故选:C.【点睛】此题主要考查了三角形的三边关系,解题的关键是熟练掌握三角形的三边关系定理.7、C【解析】根据第二象限的横坐标小于零可得m的取值范围,进而判定Q点象限.【详解】解:由点P在第二象限可得m<0,再由-3<0和m<0可知Q点在第三象限,故选择C.【点睛】本题考查了各象限内坐标的符号特征.8、B【分析】把y1,y2求出即可比较.【详解】∵点,都在直线上,∴y1=-5×4+4=-16,y2=-5×(-5)+4=29∴故选B.【点睛】此题主要考查一次函数的函数值,解题的关键是熟知一次函数上点的含义.9、B【分析】通过比较直线上两点的坐标大小,即可判断该一次函数的增减性,从而判断其所经过的象限.【详解】解:在直线上两点、满足:a<a+1,∴此函数y随x的增大而减小∴k<0,∵2>0∴该直线经过第一、二、四象限故选B.【点睛】此题考查的是判断直线所经过的象限,掌握一次函数的增减性与各项系数的关系是解决此题的关键.10、C【分析】由于△ABO关于x轴对称,所以点B与点A关于x轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数,得出结果.【详解】由题意,可知点B与点A关于x轴对称,又∵点A的坐标为(a,b),∴点B的坐标为(a,−b).故选:C.【点睛】本题考查了平面直角坐标系中关于x轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B与点A关于x轴对称是解题的关键.二、填空题(每小题3分,共24分)11、【分析】由平行线的性质得出∠B=∠E,由ASA即可得出△ABC≌△DEF.【详解】解:添加条件:,理由如下:∵BC∥EF,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);故答案为:【点睛】本题主要考查利用ASA判定三角形全等,找到另外一组相等角是解题的关键.12、【分析】根据等边三角形的性质(三边相等)求出等边三角形的面积P1,P2,P3,P4,根据周长相减的结果能找到规律即可求出答案.【详解】解:P1=1+1+1=3,P2=1+1+=,P3=1+++×3=,P4=1+++×2+×3=,…∴P3-P2===,P4-P3=,则Pn-Pn-1=,故答案为【点睛】本题考查了等边三角形的性质;通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题是关键.13、.【分析】根据得到b=3a,再代入要求的式子进行计算即可.【详解】∵∴b=3a,∴故答案为:.【点睛】此题考查了比例的基本性质,熟练掌握比例的基本性质是解题的关键,本题是一道基础题.14、80°【分析】由∠1=140°,∠2=25°,可得∠3=15°,利用翻折变换前后对应角不变,得出∠2=∠EBA,∠3=∠ACD,进而得出∠BCD+∠CBE的度数,再根据三角形外角性质,即可得到∠α的度数.【详解】∵∠1=140°,∠2=25°,

∴∠3=15°,

由折叠可得,∠2=∠EBA=25°,∠3=∠ACD=15°,

∴∠EBC=50°,∠BCD=30°,

∴由三角形外角性质可得,∠α=∠EBC+∠DCB=80°,

故答案是:80°.【点睛】考查了翻折变换的性质以及三角形外角的性质的运用,解题关键是利用翻折变换前后对应角不变.15、x(x-1)2.【解析】由题意得,x3﹣2x2+x=x(x﹣1)216、【分析】根据先提取公因式再利用公式法因式分解即可.【详解】原式=2(a2-2ab+b2)=【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.17、或【分析】因为BM可以交AD,也可以交CD.分两种情况讨论:①BM交AD于F,则△ABE≌△BAF.推出AF=BE=3,所以FD=EC,连接FE,则四边形ABEF为矩形,所以M为该矩形的对角线交点,所以BM=AC的一半,利用勾股定理得到AE等于5,即可求解;②BM交CD于F,则BF垂直AE(通过角的相加而得)且△BME∽△ABE,则,所以求得BM等于.【详解】分两种情况讨论:①BM交AD于F,∵∠ABE=∠BAF=90°,AB=BA,AE=BF,∴△ABE≌△BAF(HL)∴AF=BE,∵BE=3,∴AF=3,∴FD=EC,连接FE,则四边形ABEF为矩形,∴BM=AE,∵AB=4,BE=3,∴AE==5,∴BM=;②BM交CD于F,∵△ABE≌△BCF,∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠BEM+∠EBM=90°,∴∠BME=90°,即BF垂直AE,∴△BME∽△ABE,∴,∵AB=4,AE=5,BE=3,∴BM=.综上,故答案为:或【点睛】本题考查了正方形的性质和勾股定理,以及三角形的全等和相似,解题的关键是熟知相似三角形的判定与性质.18、75°【分析】根据已知条件设,然后根据三角形的内角和定理列方程即可得到结果.【详解】∵在△ABC中,∴设故答案为:.【点睛】本题考查了三角形的内角和定理,熟记定理是解题关键.三、解答题(共66分)19、,【分析】直接利用分式的性质分别化简进而把已知数据代入求出答案.【详解】解:原式=====当x=2+时,原式==.【点睛】此题主要考查了分式的化简求值,能够正确化简分式是解题关键.20、(1)图见解析,点C的坐标为(3,3);(2)图见解析,B1的坐标为(-2,-4)【分析】(1)直接利用已知点建立平面直角坐标系进而得出答案;(2)利用坐标之间的关系得出△A1B1C1各顶点位置,进而得出答案.【详解】解:(1)平面直角坐标系如图所示.点C的坐标为(3,3).(2)△A1B1C1如图所示.△A1B1C1与△ABC关于x轴对称.点B的对应点B1的坐标为(-2,-4).【点睛】此题主要考查了轴对称变换,正确得出各对应点位置是解题关键.21、(1)正方形的面积可表示为:或;等式:;(2)①;②103.【分析】(1)用正方形的面积公式直接求出正方形的面积;利用四个矩形的面积之和求出正方形的面积,即可得到一个等式;(2)①根据(1)中的等式进行直接求解即可;②令a=x-y,对等式进行变形后,利用(1)中的等式进行求解.【详解】(1)正方形ABCD的面积可表示为:或等式:(2)①∵,,由(1)得:∴∴②令a=x-y,则a+z=11,az=9∴原式可变形为:【点睛】本题考查的是完全平方公式的几何意义,能根据(1)中求出的等式对完全平方公式进行变形是关键.22、(1)9;(2)80【分析】(1)按照多项式乘以多项式的运算法则进行计算后代入即可求得答案;

(2)首先提取公因式xy,然后利用完全平方公式因式分解后代入即可求得答案.【详解】解:(1)原式=xy+2(x-y)-4=5+8-4=9;

(2)原式=xy(x2-2xy+y2)=xy(x-y)2=5×16=80;【点睛】本题考查了多项式乘以多项式及因式分解的知识,解题的关键是对算式进行变形,难度不大.23、(1),;(2);(3)点的坐标或或或【分析】(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.(2)如图1中,过A作AD⊥y轴于D,求出AD后再求的面积即可.(3)分三种情形:①OA=OP,②AO=AP,③PA=PO讨论即可得出点的坐标;【详解】(1)∵正比例函数的图象经过点,∴,∴,∴正比例函数解析式为.如图1中,过作轴于,在中,,,∴,∴,∴,解得,∴一次函数的解析式为.(2)如图1中,过作轴于,∵,∴,∴,(3)当时,,,当时,,当时,线段的垂直平分线为,∴,满足条件的点的坐标或或或.【点睛】本题是一次函数综合题,掌握用待定系数法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论