北京六个城区一模物理试题(涵解析)_第1页
北京六个城区一模物理试题(涵解析)_第2页
北京六个城区一模物理试题(涵解析)_第3页
北京六个城区一模物理试题(涵解析)_第4页
北京六个城区一模物理试题(涵解析)_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014年北京市海淀区高三一模试卷本试卷共14页,共300分。考试时长150分钟。考生务必将答案写在答题纸上,在试卷上作答无效。考试结束后,将本试卷和答题纸一并交回。第一部分(选择题共120分)本部分共20小题,每小题6分,共120分,在每小题列出的四个选项中,选出最符合题目要求的一项。13.关于分子动理论和物体的内能,A.液体分子的无规则运动称为布朗运动 B.物体的温度升高,物体内大量分子热运动的平均动能增大 C.物体从外界吸收热量,其内能一定增加 D.气体的温度升高,气体的压强一定增大14.下列表示重核裂变的方程是A.B.C.D.15.右图为双缝干涉的实验示意图,光源发出的光经滤光片成为单色光,然后通过单缝和双缝,在光屏上出现明暗相间的条纹。若要使干涉条纹的间距变大,在保证其他条件不变的情况下,可以A.将光屏移近双缝B.更换滤光片,改用波长更长的单色光C.增大双缝的间距D.将光源向双缝移动一小段距离16.一列沿x轴传播的简谐横波在某时刻波的图象如图所示,已知波速为20m/s,y/cmx/m02.0y/cmx/m02.04.01.03.05.00.8-0.8A.质点振动的周期为0.20sB.质点振动的振幅为1.6cmC.波沿x轴的正方向传播D.图示时刻,x=1.5m处的质点加速度沿y轴正方向BabcdNMv17.如图所示,边长为的L的正方形区域abcd中存在匀强磁场,磁场方向垂直纸面向里。一带电粒子从ad边的中点M点以一定速度垂直于ad边射入磁场,BabcdNMvA.该粒子带负电B.洛伦兹力对粒子做正功C.粒子在磁场中做圆周运动的半径为L/4D.如果仅使该粒子射入磁场的速度增大,粒子做圆周运动的半径也将变大18.如图所示,在磁感应强度为B、方向竖直向下的匀强磁场中,固定着两根水平金属导轨ab和cd,导轨平面与磁场方向垂直,导轨间距离为L,在导轨左端a、c间连接一个阻值为R的电阻,导轨电阻可忽略不计。在导轨上垂直导轨放置一根金属棒MN,其电阻为r,用外力拉着金属棒向右匀速运动,速度大小为v。已知金属棒MN与导轨接触良好,且运动过程中始终与导轨垂直。则在金属棒MN运动的过程中A.金属棒MN中的电流方向为由M到NvMBNRvMBNRacbdC.金属棒MN受到的安培力大小为D.电阻R产生焦耳热的功率为19.右图是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高。用1、2、3、4、5分别标记5个小钢球。当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示。关于此实验,下列说法中正确的是A.上述实验过程中,5个小球组成的系统机械能守恒,动量守恒B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同Ox甲R20.理论上已经证明:质量分布均匀的球壳对壳内物体的万有引力为零。现假设地球是一半径为R、质量分布均匀的实心球体,O为球心,以O为原点建立坐标轴Ox,如图甲所示。一个质量一定的小物体(假设它能够在地球内部移动)在x轴上各位置受到的引力大小用F表示,则图乙所示的四个FOx甲R第二部分(非选择题共180分)本部分共11小题,共180分。21.(18分)(1)某同学欲将量程为200μA的电流表G改装成电压表。S1ErR2R1S2G①该同学首先采用如图所示的实验电路测量该电流表的内阻Rg,图中R1、R2为电阻箱。他按电路图连接好电路,将R1的阻值调到最大,闭合S1ErR2R1S2Ga.记下R2的阻值b.调节R1的阻值,使电流表的指针偏转到满刻度c.闭合S2,调节R1和R2的阻值,使电流表的指针偏转到满刻度的一半d.闭合S2,保持R1不变,调节R2的阻值,使电流表的指针偏转到满刻度的一半②如果按正确操作步骤测得R2的阻值为500Ω,则Rg的阻值大小为;(填写字母代号)A.250ΩB.500ΩC.750ΩD.1000Ω③为把此电流表G改装成量程为2.0V的电压表,应选一个阻值为Ω的电阻与此电流表串联。(2)甲乙两个学习小组分别利用单摆测量重力加速度。①甲组同学采用图甲所示的实验装置。A.为比较准确地测量出当地重力加速度的数值,除秒表外,在下列器材中,还应该选用;(用器材前的字母表示)a.长度接近1m的细绳b.长度为30cmc.直径为1.8cmd.直径为1.8cme.最小刻度为1cm的米尺f.最小刻度为1mm的米尺B.该组同学先测出悬点到小球球心的距离L,然后用秒表测出单摆完成n次全振动所用的时间t。请写出重力加速度的表达式g=。(用所测物理量表示)C.在测量摆长后,测量周期时,摆球振动过程中悬点O处摆线的固定出现松动,摆长略微变长,这将会导致所测重力加速度的数值。(选填“偏大”、“偏小”或“不变”)v/cm·s-1t/s00.52.51.01.52.010-v/cm·s-1t/s00.52.51.01.52.010-103.0丙A.由图丙可知,该单摆的周期T=s;B.更换摆线长度后,多次测量,根据实验数据,利用计算机作出T2-L(周期平方-摆长)图线,并根据图线拟合得到方程T2=4.04L+0.035。由此可以得出当地的重力加速度g=m/s2。(取π22.(16分)如图所示,水平轨道与竖直平面内的圆弧轨道平滑连接后固定在水平地面上,圆弧轨道B端的切线沿水平方向。质量m=1.0kg的滑块(可视为质点)在水平恒力F=10.0N的作用下,从A点由静止开始运动,当滑块运动的位移x=0.50m时撤去力F。已知A、B之间的距离x0=1.0m,滑块与水平轨道间的动摩擦因数μ=0.10,取g=10m/s2。(1)在撤去力F时,滑块的速度大小;(2)滑块通过B点时的动能;ABCFh(3)滑块通过B点后,能沿圆弧轨道上升的最大高度ABCFh23.为减少烟尘排放对空气的污染,某同学设计了一个如图所示的静电除尘器,该除尘器的上下底面是边长为L=0.20m的正方形金属板,前后面是绝缘的透明有机玻璃,左右面是高h=0.10m的通道口。使用时底面水平放置,两金属板连接到U=2000V的高压电源两极(下板接负极),于是在两金属板间产生一个匀强电场(忽略边缘效应)。均匀分布的带电烟尘颗粒以v=10m/s的水平速度从左向右通过除尘器,已知每个颗粒带电荷量q=+2.0×10-17C,质量m=1.0×10-15kg,不考虑烟尘颗粒之间的相互作用和空气阻力,并忽略烟尘颗粒所受重力。在闭合开关(1)求烟尘颗粒在通道内运动时加速度的大小和方向;(2)求除尘过程中烟尘颗粒在竖直方向所能偏转的最大距离;(3)除尘效率是衡量除尘器性能的一个重要参数。除尘效率是指一段时间内被吸附的烟尘颗粒数量与进入除尘器烟尘颗粒总量的比值。试求在上述情况下该除尘器的除尘效率;若用该除尘器对上述比荷的颗粒进行除尘,试通过分析给出在保持除尘器通道大小不变的前提下,提高其除尘效率的方法。24.(20分)根据玻尔理论,电子绕氢原子核运动可以看作是仅在库仑引力作用下的匀速圆周运动,已知电子的电荷量为e,质量为m,电子在第1轨道运动的半径为r1,静电力常量为k。(1)电子绕氢原子核做圆周运动时,可等效为环形电流,试计算电子绕氢原子核在第1轨道上做圆周运动的周期及形成的等效电流的大小;(2)氢原子在不同的能量状态,对应着电子在不同的轨道上绕核做匀速圆周运动,电子做圆周运动的轨道半径满足rn=n2r1,其中n为量子数,即轨道序号,rn为电子处于第n轨道时的轨道半径。电子在第n轨道运动时氢原子的能量En为电子动能与“电子-原子核”这个系统电势能的总和。理论证明,系统的电势能Ep和电子绕氢原子核做圆周运动的半径r存在关系:Ep=-k(以无穷远为电势能零点)。请根据以上条件完成下面的问题。①试证明电子在第n轨道运动时氢原子的能量En和电子在第1轨道运动时氢原子的能量E1满足关系式②假设氢原子甲核外做圆周运动的电子从第2轨道跃迁到第1轨道的过程中所释放的能量,恰好被量子数n=4的氢原子乙吸收并使其电离,即其核外在第4轨道做圆周运动的电子脱离氢原子核的作用范围。不考虑电离前后原子核的动能改变,试求氢原子乙电离后电子的动能。2014年北京市西城区高三一模试卷13.下列说法中正确的是A.随着分子间距离增大,引力减小但斥力增大B.温度是分子热运动平均动能的标志C.外界对系统做功,系统内能一定增加D.系统从外界吸收热量,系统内能一定增加14.已知质子、中子、氘核质量分别是m1、m2、m3,光速为c。则质子和中子结合成氘核的过程中A.吸收的能量为(m1+m2+m3)c2B.吸收的能量为(m1+m2-m3)c2C.释放的能量为(m1+m2+m3)c2D.释放的能量为(m1+m2-m3)c2x/my00.51Pv15.如图所示是一列简谐横波在t=0时刻的波形图,已知这列波沿x轴正方向传播,周期为Tx/my00.51PvA.t=0时刻,P点速度沿+y方向B.t=0时刻,P点速度沿+x方向C.t=时刻,P点在波谷位置D.t=时刻,P点在波峰位置16.卡文迪许用扭秤测出引力常量G,被称为第一个“称”出地球质量的人。若已知地球表面的重力加速度g、地球的半径R、地球绕太阳运转的周期T,忽略地球自转的影响,则关于地球质量M,下列计算正确的是A.B.C.D.17.冰壶运动深受观众喜爱,图1为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头。在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图2。若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图3中的哪幅图图图1图2甲乙v乙乙甲A乙甲B甲乙C乙甲D图3甲乙AB18.如图所示,几位同学在做“摇绳发电”实验:把一条长导线的两端连在一个灵敏电流计的两个接线柱上,形成闭合回路。两个同学迅速摇动AB这段“绳”。假设图中情景发生在赤道,地磁场方向与地面平行,由南指向北。图中摇“绳”同学是沿东西站立的,甲同学站在西边,手握导线的A甲乙AB A.当“绳”摇到最高点时,“绳”中电流最大B.当“绳”摇到最低点时,“绳”受到的安培力最大 C.当“绳”向下运动时,“绳”中电流从A流向BD.在摇“绳”过程中,A点电势总是比B点电势高GMN19.如图,虚线框内为改装好的电表,M、N为新电表的接线柱,其中灵敏电流计G的满偏电流为200μA,已测得它的内阻为495.0Ω。图中电阻箱读数为5.0Ω。现将MNGMNA.M、N两端的电压为1mVB.M、N两端的电压为100mVC.流过M、N的电流为2μAD.流过M、N的电流为20mA20.1885年瑞士的中学教师巴耳末发现,氢原子光谱中可见光部分的四条谱线的波长可归纳成一个简单的经验公式:,n为大于2的整数,R为里德伯常量。1913年,丹麦物理学家玻尔受到巴耳末公式的启发,同时还吸取了普朗克的量子假说、爱因斯坦的光子假说和卢瑟福的核式结构原子模型,提出了自己的原子理论。根据玻尔理论,推导出了氢原子光谱谱线的波长公式:,m与n都是正整数,且n>m。当m取定一个数值时,不同数值的n得出的谱线属于同一个线系。如:m=1,n=2、3、4、…组成的线系叫赖曼系;m=2,n=3、4、5、…组成的线系叫巴耳末系;m=3,n=4、5、6、…组成的线系叫帕邢系;m=4,n=5、6、7、…组成的线系叫布喇开系;m=5,n=6、7、8、…组成的线系叫逢德系。以上线系只有一个在紫外光区,这个线系是A.赖曼系B.帕邢系C.布喇开系D.逢德系21.(18分)aP1Oa'b'bP2P3P4AMN(1)在做“测定玻璃的折射率”的实验中,先在白纸上放好玻璃砖,在玻璃砖的一侧插上两枚大头针P1和P2,然后在另一侧透过玻璃砖观察,插上大头针P3、P4,使P3挡住P1、P2的像,P4挡住P3和P1、P2的像。如图所示,aa'和bb'分别是玻璃砖与空气的两个界面,用“+”表示大头针的位置。图中AOaP1Oa'b'bP2P3P4AMN接电源纸带重锤图1①请将光路图画完整,并在图中标出光线进入玻璃砖发生折射现象的入射角θ1和折射角接电源纸带重锤图1②该玻璃砖的折射率可表示为n=________。(用θ1和θ2表示)(2)利用图1装置做“验证机械能守恒定律”的实验。①除打点计时器(含纸带、复写纸)、交流电源、铁架台、导线及开关外,在下面的器材中,必须使用的还有________。(选填器材前的字母)A.大小合适的铁质重锤B.体积较大的木质重锤C.刻度尺D.游标卡尺E.秒表②图2是实验中得到的一条纸带。在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O的距离分别为hA、hB、hC。重锤质量用m表示,已知当地重力加速度为g,打点计时器打点的周期为T。从打下O点到打下B点的过程中,重锤重力势能的减少量∣ΔEp∣=________,动能的增加量ΔEk=________。AA图2BCOhAhBhC③实验结果往往是重力势能的减少量略大于动能的增加量,关于这个误差下列说法正确的是________A.该误差属于偶然误差B.该误差属于系统误差C.可以通过多次测量取平均值的方法来减小该误差D.可以通过减小空气阻力和摩擦阻力的影响来减小该误差④在实验过程中,下列实验操作和数据处理正确的是________A.释放重锤前,使纸带保持竖直B.做实验时,先接通打点计时器的电源,再释放重锤C.为测量打点计时器打下某点时重锤的速度v,可测量该点到O点的距离h,再根据公式计算,其中g应取当地的重力加速度D.用刻度尺测量某点到O点的距离h,利用公式mgh计算重力势能的减少量,其中g应取当地的重力加速度⑤某同学在纸带上选取计数点后,测量它们到起始点O的距离h,并计算出打相应计数点时重锤的速度v,通过描绘v2-h图像去研究机械能是否守恒。若实验中重锤所受阻力不可忽略,且阻力大小保持不变,从理论上分析,合理的v2-h图像是图3中的哪一个________OOhv2AOhBOhCOhD图3v2v2v222.(16分)如图所示,电子从灯丝K发出(初速度不计),在KA间经加速电压U1加速后,从A板中心小孔射出,进入由M、N两个水平极板构成的偏转电场,M、N两板间的距离为d,电压为U2,板长为L,电子进入偏转电场时的速度与电场方向垂直,射出时没有与极板相碰。已知电子的质量为m,电荷量为e,不计电子的重力及它们之间的相互作用力。求:(1)电子穿过A板小孔时的速度大小v;(2)电子在偏转电场中的运动时间t;(3)电子从偏转电场射出时沿垂直于板方向偏移的距离y。MMNKA图1图12012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功。图1为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图。飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止。若航母保持静止,在某次降落中,以飞机着舰为计时起点,飞机的速度随时间变化关系如图2所示。飞机在t1=0.4s时恰好钩住阻拦索中间位置,此时速度v1=70m/s;在t2=2.4s时飞机速度v2=10m/s。飞机从t1到t2的运动可看成匀减速直线运动。设飞机受到除阻拦索以外的阻力f大小不变,f=5.0×104N,“歼15”舰载机的质量m=2.0×(1)若飞机在t1时刻未钩住阻拦索,仍立即关闭动力系统,仅在阻力f的作用下减速,求飞机继续滑行的距离(假设甲板足够长);(2)在t1至t2间的某个时刻,阻拦索夹角α=120°,求此时阻拦索中的弹力T;(3)飞机钩住阻拦索后在甲板上滑行的距离比无阻拦索时少s=898m,求从t2时刻至飞机停止,阻拦索对飞机做的功W。图2图2701000.42.4t/sv/(m•s-1)飞机阻拦索定滑轮图1αbcbcMNvB图1ad(1)如图1所示,固定于水平面上的金属框架abcd,处在竖直向下的匀强磁场中。金属棒MN沿框架以速度v向右做匀速运动。框架的ab与dc平行,bc与ab、dc垂直。MN与bc的长度均为l,在运动过程中MN始终与bc平行,且与框架保持良好接触。磁场的磁感应强度为B。a.请根据法拉第电磁感应定律,推导金属棒MN中的感应电动势E;b.在上述情景中,金属棒MN相当于一个电源,这时的非静电力与棒中自由电子所受洛伦兹力有关。请根据电动势的定义,推导金属棒MN中的感应电动势E。(2)为进一步研究导线做切割磁感线运动产生感应电动势的过程,现构建如下情景:图2MNvB 如图2所示,在垂直于纸面向里的匀强磁场中,一内壁光滑长为l的绝缘细管MN,沿纸面以速度v向右做匀速运动。在管的N端固定一个电量为q的带正电小球(可看做质点)。某时刻将小球释放,小球将会沿管运动。已知磁感应强度大小为B,小球的重力可忽略。在小球沿管从N运动到M图2MNvB2014年北京市东城区高三一模试卷13.一束单色光从真空斜射向某种介质的表面,光路如图所示。下列说法中正确的是30°介质45°真空30°介质45°真空B.此介质的折射率等于C.入射角小于45°时可能发生全反射现象D.入射角小于30°时可能发生全反射现象2n∞-0.85-1.51-3.40-13.61340E/eV14.氢原子能级如图所示。大量处于n=4能级的氢原子向低能级跃迁时发出不同频率的光,其中a光是从n=3能级向n=12n∞-0.85-1.51-3.40-13.61340E/eVA.从n=4能级向n=3能级跃迁时发出的B.从n=4能级向n=2能级跃迁时发出的C.从n=4能级向n=1能级跃迁时发出的D.从n=3能级向n=2能级跃迁时发出的15.图甲为一简谐横波在t=0时刻的波形图像,图乙为横波中x=2m处质点A的振动图像A.波的传播方向沿x轴负方向B.波的传播速度大小为2m/sx/my/cm甲20246x/my/cm甲202468-200y/cmt/s1234-2020乙0AD.在t=1s时刻,图甲中质点A的位置坐标为(0,20)A~A1V1V2RA216.如图所示,一理想变压器原线圈匝数n1=1000匝,副线圈匝数n2=200匝,原线圈所接交流电源的电动势瞬时值表达式e~A1V1V2RA2baA.A1的示数约为0.10A B.V1的示数约为baC.V2的示数约为62.2V D.A2的示数约为0.75A17.地面附近处的电场的电场线如图所示,其中一条方向竖直向下的电场线上有a、b两点,高度差为h。质量为m、电荷量为-q的检验电荷,从a点由静止开始沿电场线运动,到b点时速度为。下列说法中正确为A.质量为m、电荷量为+q的检验电荷,从a点由静止起沿电场线运动到b点时速度为B.质量为m、电荷量为+2q的检验电荷,从a点由静止起沿电场线运动到b点时速度为C.质量为m、电荷量为-2q的检验电荷,从a点由静止起沿电场线运动到b点时速度仍为D.质量为m、电荷量为-2q的检验电荷,在a点由静止开始释放,点电荷将沿电场线在a、b两点间来回运动18.我国“玉兔号”月球车被顺利送抵月球表面,并发回大量图片和信息。若该月球车在地球表面的重力为G1,在月球表面的重力为G2。已知地球半径为R1,月球半径为R2,地球表面处的重力加速度为g,则A.“玉兔号”月球车在地球表面与月球表面质量之比为B.地球的质量与月球的质量之比为C.地球表面处的重力加速度与月球表面处的重力加速度之比为MNN静电计MNN静电计19.如图所示,由M、N两块相互靠近的平行金属板组成的平行板电容器,极板N与静电计的金属球相接,极板M与静电计的外壳均接地。给电容器充电,静电计指针张开一定角度。实验过程中,电容器所带电荷量不变。下面操作能使静电计指针张角变大的是A.将M板向上平移 B.将M板沿水平向右方向靠近N板C.在M、N之间插入有机玻璃板ABCDt/sF/N010ABCDt/sF/N010甲乙20.将形金属框架D固定在水平面上,用绝缘杆C将金属棒AB顶在金属框架的两端,组成一个良好的矩形回路,如图甲所示。AB与绝缘杆C间有压力传感器,开始时压力传感器的读数为10N。将整个装置放在匀强磁场中,磁感应强度随时间做周期性变化,设垂直于纸面向外方向的磁感应强度为正值,形金属框架放入磁场前后的形变量可认为相同。压力传感器测出压力随时间变化的图像如图乙所示。由此可以推断,匀强磁场随时间变化的情况可能是AtAt/sB/T0t/sB/T0Bt/sB/T0C丙C.如图丙中的C图所示 D.上述选项都不正确痱子粉21.(1)(6分)在做“用油膜法估测分子大小”的实验中,已知实验室中使用的酒精油酸溶液的浓度为A,N滴溶液的总体积为V。在浅盘中的水面上均匀撒上痱子粉,将一滴溶液滴在水面上,待油膜稳定后,在带有边长为a的正方形小格的玻璃板上描出油膜的轮廓(如图所示),测得油膜占有的正方形小格个数为X。痱子粉①用以上字母表示油酸分子的大小d=_____________。②从图中数得X=____________。甲RxAVES(2)(12分)为了测量某一未知电阻Rx的阻值,某实验小组找来以下器材:电压表(0~3V,内阻约3kΩ)、电流表(0~0.6A,内阻约0.5Ω)、滑动变阻器(0~15Ω甲RxAVES①请按图甲所示的电路图将图乙中实物连线图补齐;--+VA乙RxPab0.20.501.001.502.002.50U/VI/A00.10.30.40.500.20.501.001.502.002.50U/VI/A00.10.30.40.500.6丙③闭合开关,缓慢调节滑动变阻器,得到多组电压表与电流表的读数,根据实验数据在坐标系中描出坐标点,请你完成U-I图线;④根据U-I图可得,该未知电阻的阻值Rx=______。(保留两位有效数字)⑤由于实验中使用的电表不是理想电表,会对实验结果造成一定的影响,则该小组同学实验测出的电阻值_____________Rx的真实值(填“>”、“<”或“=”)。⑥利用现有的仪器,为了更加精确地测量这个电阻的阻值,请你给该实验小组提出建议并说明理由。ABCθHh22.(16分)水上滑梯可简化成如图所示的模型,斜槽AB和水平槽BC平滑连接,斜槽AB的竖直高度H=5.0m,倾角θ=37°。BC面与水面的距离h=0.80m,人与AB、BC间的摩擦均忽略不计。取重力加速度g=10mABCθHh(1)该同学沿斜槽AB下滑时加速度的大小a;(2)该同学滑到B点时速度的大小vB;(3)从C点滑出至落到水面的过程中,该同学在水平方向位移的大小x。23.(18分)如图所示,在电子枪右侧依次存在加速电场,两水平放置的平行金属板和竖直放置的荧光屏。加速电场的电压为U1。两平行金属板的板长、板间距离均为d。荧光屏距两平行金属板右侧距离也为d。电子枪发射的质量为m、电荷量为–e的电子,从两平行金属板的中央穿过,打在荧光屏的中点O。不计电子在进入加速电场前的速度及电子重力。(1)求电子进入两金属板间时的速度大小v0;(2)若两金属板间只存在方向垂直纸面向外的匀强磁场,求电子到达荧光屏的位置与O点距离的最大值和此时磁感应强度B的大小;电子枪U1电子束S1BOdddMN(3)若两金属板间只存在竖直方向的匀强电场,两板间的偏转电压为U2,电子会打在荧光屏上某点,该点距O点距离为,求此时电子枪U1电子束S1BOdddMNAB24.(20分)一同学利用手边的两个完全相同的质量为m的物块和两个完全相同、劲度系数未知的轻质弹簧,做了如下的探究活动。已知重力加速度为g,不计空气阻力AB(1)取一个轻质弹簧,弹簧的下端固定在地面上,弹簧的上端与物块A连接,物块B叠放在A上,A、B处于静止状态,如图所示。若A、B粘连在一起,用一竖直向上的拉力缓慢提升B,当拉力的大小为时,A物块上升的高度为L;若A、B不粘连,用一竖直向上的恒力作用在B上,当A物块上升的高度也为L时,A、B恰好分离。求:a.弹簧的劲度系数;b.恒力的大小;BA(2)如图所示,将弹簧1上端与物块A拴接,下端压在桌面上(不拴接),弹簧2两端分别与物块A、B拴接,整个系统处于平衡状态。现施力将物块B缓缓地竖直上提,直到弹簧1的下端刚好脱离桌面。求在此过程中该拉力所做的功?(已知弹簧具有的弹性势能为,k为弹簧的劲度系数,Δx为弹簧的形变量)BA2014年北京市丰台区高三一模试卷13.下列说法正确的是A.布朗运动就是液体分子的热运动B.物体的温度越高,分子的平均动能越大C.对一定质量气体加热,其内能一定增加D.气体压强是气体分子间的斥力产生的14.如图所示的4种明暗相间的条纹,是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(黑色部分表示亮纹)。则在下面的四个图中,哪个图是蓝光形成的干涉图样A.B.C.D.15.天然放射现象中可产生α、β、γ三种射线。下列说法正确的是A.β射线是由原子核外电子电离产生的B.经过一次α衰变,变为C.α射线的穿透能力比γ射线穿透能力强D.放射性元素的半衰期随温度升高而减小16.一简谐横波在x轴上传播,t=0时的波形如图甲所示。x=8m处质点P的振动图线如图乙所示。A.这列波的波长为8B.这列波的频率为2HzC.这列波的波速为4m/sD.这列波向左传播tt/sy/cm100.2234乙x/my/cm200.2468P甲17.如图所示,电源电动势为E,内阻为r,滑动变阻器最大电阻为R,开关K闭合。两平行金属极板a、b间有匀强磁场,一带负电的粒子(不计重力)以速度v水平匀速穿过两极板。下列说法正确的是A.若将滑片P向上滑动,粒子将向a板偏转B.若将a极板向上移动,粒子将向a板偏转C.若增大带电粒子的速度,粒子将向b板偏转D.若增大带电粒子带电量,粒子将向b板偏转18.“神舟十号”飞船发射后,先进入一个椭圆轨道,经过多次变轨进入距地面高度为h的圆形轨道。已知飞船质量为m,地球半径为R,地球表面的重力加速度为g。设飞船进入圆形轨道后运动时的动能为EK,则A.B.C.D.19.某同学利用如图实验装置研究摆球的运动情况,摆球由A点由静止释放,经过最低点C到达与A等高的B点,D、E、F是OC连线上的点,OE=DE,DF=FC,OC连线上各点均可钉钉子。每次均将摆球从A点由静止释放,不计绳与钉子碰撞时机械能的损失。下列说法正确的是A.若只在E点钉钉子,摆球最高可能摆到AB连线以上的某点EOABCDFEOABCDFC.若只在F点钉钉子,摆球最高可能摆到D点D.若只在F点以下某点钉钉子,摆球可能做完整的圆周运动20.如图光滑水平面上有竖直向下的有界匀强磁场,磁场宽度为2L、磁感应强度为B。正方形线框abcd的电阻为R,边长为L,线框以与ab垂直的速度3v进入磁场,线框穿出磁场时的速度为v,整个过程中ab、cd两边始终保持与磁场边界平行。设线框进入磁场区域过程中产生的焦耳热为Q1,穿出磁场区域过程中产生的焦耳热为Q2。则Q1:Q2×××××××××××××××××××××××××dcbaA.1:1B.2:1C.3:2D.5:321.(18分)(1)①.用游标卡尺测量某钢管的外径,某次游标卡尺(主尺的最小分度为1mm)的示数如图1所示,其读数为cm。②.如图2所示,螺旋测微器测出的某物件的宽度是________mm。(2)CCAB2.80ED3.263.724.18图4(单位:cm)图图5Fa+++++++++0你认为产生这种结果的原因可能是。,则m与M的关系应满足。 22.(16分)电磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的本质联系。电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即,这就是法拉第电磁感应定律。×××××××××××××××bcdvaRBd(1)如图所示,把矩形线框abcd放在磁感应强度为B×××××××××××××××bcdvaRBd(2)两根足够长的光滑直金属导轨平行放置在倾角为θ的绝缘斜面上,两导轨间距为L。两导轨间接有阻值为R的电阻。一根质量为m的均匀直金属杆MN放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆MN由静止沿导轨开始下滑。求①当导体棒的速度为v(未达到最大速度)时,通过MN棒的电流大小和方向;θθMθθMNBR 23.(18分)如图所示为利用电磁作用输送非导电液体装置的示意图。一边长为L、截面为正方形的塑料管道水平放置,其右端面上有一截面积为S的小喷口,喷口离地的高度为h,管道中有一绝缘活塞,在活塞的中部嵌有金属棒,整个装置放在竖直向上的匀强磁场中,当棒中通有垂直纸面向里的恒定电流I时,活塞以某一速度向右匀速推动液体,液体以不变的速度v源源不断地沿水平方向射出。若液体的密度为ρ,重力加速度为g,不计所有阻力。求(1)液体落地点离喷口的水平距离x;(2)该装置的功率;活塞xBhI(3)磁感应活塞xBhI 24.(20分)如图所示,直角坐标系xoy位于竖直平面内,y轴正方向竖直向上,x轴正方向水平向右。空间中存在相互垂直的匀强电场和匀强磁场,匀强磁场垂直xoy平面向里,磁感应强度大小为B。匀强电场(图中未画出)方向平行于xoy平面,小球(可视为质点)的质量为m、带电量为+q,已知电场强度大小为,g为重力加速度。(1)若匀强电场方向水平向左,使小球在空间中做直线运动,求小球在空间中做直线运动的速度大小和方向;(2)若匀强电场在xoy平面内的任意方向,确定小球在xoy平面内做直线运动的速度大小的范围;××××××××××××××××××××××××××××××××××××××××××××××××××××Oyx2014年北京市朝阳区高三一模试卷第一部分(选择题共120分)本部分共20小题,每小题6分,共120分。在每小题列出的四个选项中,选出最符合题目要求的一项。13.关于α、β、γ三种射线,下列说法正确的是A.α射线是一种波长很短的电磁波 B.γ射线是一种波长很短的电磁波C.β射线的电离能力最强 D.γ射线的电离能力最强14.一束单色光由玻璃斜射向空气,下列说法正确的是A.波长一定变长 B.频率一定变小C.传播速度一定变小 D.一定发生全反射现象15.一正弦交变电流的电压随时间变化的规律如图所示。由图可知该交变电流A.周期为0.125sB.电压的有效值为VC.电压的最大值为VD.电压瞬时值的表达式为(V)16.如图所示,A、B两物块的质量分别为m和M,把它们靠在一起从光滑斜面的顶端由静止开始下滑。已知斜面的倾角为θ,斜面始终保持静止。则在此过程中物块B对物块A的压力为A.Mgsinθ B.Mgcosθ C.0 D.(M+m)gsinθ17.图1为一列简谐横波在t=0时的波形图,P是平衡位置在x=1cm处的质元,Q是平衡位置在x=4cm处的质元。图2为质元A.t=0.3s时,质元Q的加速度达到正向最大B.波的传播速度为20m/sC.波的传播方向沿x轴负方向D.t=0.7s时,质元P的运动方向沿y轴负方向18.如图所示,真空中有A、B两个等量异种点电荷,O、M、N是AB连线的垂线上的三个点,且AO>OB。一个带负电的检验电荷仅在电场力的作用下,从M点运动到N点,其轨迹如图中实线所示。若M、N两点的电势分别为φM和φN,检验电荷通过M、N两点的动能分别为EkM和EkN,则A.φM=φN,EkM=EkN B.φM<φN,EkM<EkNC.φM<φN,EkM>EkN D.φM>φN,EkM>EkN19.某同学利用如图所示的电路描绘小灯泡的伏安特性曲线。在实验中,他将滑动变阻器的滑片从左端匀速滑向右端,发现电流表的指针始终在小角度偏转,而电压表的示数开始时变化很小,但当滑片接近右端时电压表的示数迅速变大。为了便于操作并减小误差,你认为应采取的措施是A.换用最大阻值更大的滑动变阻器,将导线a的M端移到电流表“3”B.换用最大阻值更大的滑动变阻器,将导线b的N端移到电流表“0.6”C.换用最大阻值更小的滑动变阻器,将导线a的M端移到电流表“3”D.换用最大阻值更小的滑动变阻器,将导线b的N端移到电流表“0.6”20.给一定质量、温度为0℃的水加热,在水的温度由0℃上升到4℃的过程中,水的体积随着温度升高反而减小,我们称之为“反常膨胀”。某研究小组通过查阅资料知道:水分子之间存在一种结合力,这种结合力可以形成多分子结构,在这种结构中,水分了之间也存在相互作用的势能。在水反常膨胀的过程中,体积减小是由于水分子之间的结构发生了变化,但所有A.水分子的平均动能减小,吸收的热量一部分用于分子间的结合力做正功B.水分子的平均动能减小,吸收的热量一部分用于克服分子间的结合力做功C.水分子的平均动能增大,吸收的热量一部分用于分子间的结合力做正功D.水分子的平均动能增大,吸收的热量一部分用于克服分子间的结合力做功第二部分(非选择题共180分)本部分共11小题,共180分。21.(18分)(1)如图1所示为多用电表的示意图,其中S、T为可调节的部件,现用此电表测量一阻值约为1000Ω的定值电阻,部分操作步骤如下:①选择开关应调到电阻挡的______(填“×1”、“×10”、“×100”或“×1k”)位置。②将红、黑表笔分别插入“+”、“-”插孔,把两笔尖相互接触,调节____(填“S”或“T”),使电表指针指向______(填“左侧”或“右侧”)的“0”位置。③将红、黑表笔的笔尖分别与电阻两端接触,电表示数如图2所示,该电阻的阻值为______Ω。(2)某实验小组采用如图3所示的装置探究“合力做功与动能变化的关系”。打点计时器工作频率为50Hz。实验的部分步骤如下:a.将木板的左端垫起,以平衡小车的摩擦力;b.在小车中放入砝码,纸带穿过打点计时器,连在小车后端,用细线连接小车和钩码;c.将小车停在打点计时器附近,接通电源,释放小车,小车拖动纸带,打点计时器在纸带上打下一系列的点,断开电源;d.改变钩码或小车中砝码的质量,更换纸带,重复b、c的操作。①在小车的运动过程中,对于钩码、砝码和小车组成的系统,钩码的重力做____功(填“正”或“负”);②图4是某次实验时得到的一条纸带,他们在纸带上取计数点O、A、B、C、D和E,用最小刻度是毫米的刻度尺进行测量,读出各计数点对应的刻度x,通过计算得到各计数点到O的距离s以及对应时刻小车的瞬时速度v。请将C点对应的测量和计算结果填在下表中的相应位置。图4计数点x/cms/cmv/(m·s-1)O1.000.000.30A2.341.340.38B4.043.040.46C5.00D8.337.330.61E10.909.900.70③实验小组认为可以通过绘制图线来分析实验数据(其中,v是各计数点对应时刻小车的瞬时速度,vO是O点对应时刻小车的瞬时速度)。他们根据实验数据在图5中标出了O、A、B、D、E对应的坐标点,请你在该图中标出计数点C对应的坐标点,并画出图线。④实验小组计算了他们绘制的图线的斜率,发现该斜率大于理论值,其原因可能是___________________。22.(16分)如图所示,MN、PQ是两根足够长的光滑平行金属导轨,导轨间距为d,导轨所在平面与水平面成θ角,M、P间接阻值为R的电阻。匀强磁场的方向与导轨所在平面垂直,磁感应强度大小为B。质量为m、阻值为r的金属棒放在两导轨上,在平行于导轨的拉力作用下,以速度v匀速向上运动。已知金属棒与导轨始终垂直并且保持良好接触,重力加速度为g。求:(1)金属棒产生的感应电动势E;(2)通过电阻R电流I;(3)拉力F的大小。23.(18分)在研究某些物理问题时,有很多物理量难以直接测量,我们可以根据物理量之间的定量关系和各种效应,把不容易测量的物理量转化成易于测量的物理量。(1)在利用如图1所示的装置探究影响电荷间相互作用力的因素时,我们可以通过绝缘细线与竖直方向的夹角来判断电荷之间相互作用力的大小。如果A、B两个带电体在同一水平面内,B的质量为m,细线与竖直方向夹角为θ,求A、B之间相互作用力的大小。(2)导体板垂直置于匀强磁场中,当电流通过导体板时,外部磁场的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧兹力达到平衡时,在导体板这两个表面之间就会形成稳定的电势差,这种现象称为霍尔效应。利用霍尔效应可以测量磁场的磁感应强度。如图2若磁场方向与金属导体板的前后表面垂直,通过所如图所示的电流I,可测得导体板上、下表面之间的电势差为U,且下表面电势高。已知导体板的长、宽、高分别为a、b、c,电子的电荷量为e,导体中单位体积内的自由电子数为n。求:a.导体中电子定向运动的平均速率v;b.磁感应强度B的大小和方向。24.(20分)如图1所示,木板A静止在光滑水平面上,一小滑块B(可视为质点)以某一水平初速度从木板的左端冲上木板。(1)若木板A的质量为M,滑块B的质量为m,初速度为v0,且滑块B没有从木板A的右端滑出,求木板A最终的速度v。(2)若滑块B以v1=3.0m/s的初速度冲上木板A,木板A最终速度的大小为v=1.5m/s;若滑块B以初速度v2=7.5m/s冲上木板A,木板A最终速度的大小也为v=1.5m/s。已知滑块B与木板A间的动摩擦因数μ=0.3,g取10m/s2。求木板A的长度L。(3)若改变滑块B冲上木板A的初速度v0,木板A最终速度v的大小将随之变化。请你在图2中定性画出v-v0图线。2014年北京市石景山区高三一模试卷13.根据玻尔理论,氢原子的电子由n=1轨道跃迁到n=2轨道,下列说法正确的是A.原子要吸收某一频率的光子B.原子要放出一系列频率不同的光子C.原子的能量增加,电子的动能增加D.原子的能量减少,电子的动能减少14.关于红光和绿光,下列说法正确的是A.红光的频率大于绿光的频率B.在同一玻璃中红光的速率小于绿光的速率C.用同一装置做双缝干涉实验,红光的干涉条纹间距大于绿光的干涉条纹间距D.当红光和绿光以相同入射角从玻璃射入空气时,若绿光刚好能发生全反射,则红光也一定能发生全反射15.下列说法正确的是A.布朗运动是液体分子的无规则运动B.布朗运动是指液体中悬浮颗粒的无规则运动C.温度降低,物体内每个分子的动能一定减小D.温度低的物体内能一定小16.甲、乙两颗人造卫星绕地球作圆周运动,半径之比为R1:R2=1:4,则它们的运动周期之比和运动速率之比分别为A.T1:T2=8:1,v1:v2=2:1B.T1:T2=1:8,v1:v2=1:2C.T1:T2=1:8,v1:v2=2:1D.T1:T2=8:1,v1:v2=1:20.2-0.2010.5x/my/m17.右图是一列沿着x轴正方向传播的横波在t0.2-0.2010.5x/my/mA.这列波的波速v=2.0B.在t=0时,x=0.5m处的质点速度为零C.经过2.0s,这列波沿x轴正方向传播0.8D.在t=0.3s时,x=0.5m处的质点的运动方向为y轴正方向18.如图所示,L1、L2是高压输电线,图中两电表示数分别是220V和10A。已知甲图中原、副线圈匝数比为100:1,乙图中原副线圈匝数比为1:A.甲图中的电表是电压表,输电电压为2200VB.甲图中的电表是电流表,输电电流是100AC.乙图中的电表是电压表,输电电压为22000VD.乙图中的电表是电流表,输电电流是100A乙t7Ot6t5t3t2乙t7Ot6t5t3t2t1t4t/sF/NFm1Fm2Fm3甲O A.t1、t2时刻小球的速度最大B.t2、t5时刻小球的动能最小 C.t3、t4时刻小球的运动方向相同D.t4-t3<t7-t6ab甲乙20.如图所示,a、b是边界范围、磁感应强度大小和方向都相同的两个匀强磁场区域,a的下端离水平地面的高度比b高一些。甲、乙是两个完全相同的闭合正方形导线框,分别位于a、b的正上方,两线框的下端离地面的高度相同。两线框由静止同时释放,穿过磁场后落到地面,ab甲乙A.乙线框先落地B.两线框同时落地C.穿过磁场的过程中,乙线框产生的热量较少D.穿过磁场的过程中,两线框产生的热量相同21.(共18分)小灯泡灯丝的电阻随温度的升高而变大,某同学利用实验探究这一现象。所提供的器材有:代号代号器材规格A电流表(A1)量程0-0.6A,内阻约0.125ΩB电流表(A2)量程0-3A,内阻约0.025ΩC电压表(V1)量程0-3V,内阻约3kΩD电压表(V2)量程0-15V,内阻约15kΩE滑动变阻器(R1)总阻值约10ΩF滑动变阻器(R2)总阻值约200ΩG电池(E)电动势3.0V,内阻很小H导线若干,电键K该同学选择仪器,设计电路并进行实验,通过实验得到如下数据:I/A00.120.210.290.340.380.420.450.470.490.50U/V00.200.400.600.801.001.201.401.601.802.0000I/A0.40.81.21.62.00.10.20.30.40.5U/V图乙图甲图甲(1)请你推测该同学选择的器材是:电流表为,电压表为,滑动变阻器为(以上均填写器材代号)。(2)请你推测该同学设计的实验电路图并画在图甲的方框中。(3)请在图乙的坐标系中画出小灯泡的I—U曲线。(4)若将该小灯泡直接接在电动势是1.5V,内阻是2.0Ω的电池两端,小灯泡的实际功率为W。22.(16分)如图所示,两块相同的金属板正对着水平放置,板间距离为d。当两板间加电压U时,一个质量为m、电荷量为+q的带电粒子,以水平速度v0从A点射入电场,经过一段时间后从B点射出电场,A、B间的水平距离为L,不计重力影响。求:BAv0d(1)带电粒子从BAv0d(2)带电粒子经过B点时速度的大小;(3)A、B间的电势差。23.(18分)一辆汽车的质量为m,其发动机的额定功率为P0。从某时刻起汽车以速度v0在水平公路上沿直线匀速行驶,此时汽车发动机的输出功率为,接着汽车开始沿直线匀加速行驶,当速度增加到时,发动机的输出功率恰好为P0。如果汽车在水平公路上沿直线行驶中所受到的阻力与行驶速率成正比,求:(1)汽车在水平公路上沿直线行驶所能达到的最大速率vm;(2)汽车匀加速行驶所经历的时间和通过的距离;(3)为提高汽车行驶的最大速率,请至少提出两条在设计汽车时应考虑的建议。ABrDCv0θθO2O1PQ24.(20分)下图是放置在竖直平面内游戏滑轨的模拟装置的示意图。滑轨由四部分粗细均匀的金属杆组成,其中水平直轨AB与倾斜直轨CD的长度均为L=3m,圆弧形轨道AQC和BPD均光滑,AQC的半径为r=1m,AB、CD与两圆弧形轨道相切,O2D、O1C与竖直方向的夹角均为=37°。现有一质量为m=1kg的滑块(可视为质点)穿在滑轨上,以v0=5m/s的初速度从B点开始水平向左运动,滑块与两段直轨道间的动摩擦因数均为μ=0.2ABrDCv0θθO2O1PQ(1)滑块第一次回到B点时的速度大小;(2)滑块第二次到达C点时的动能;(3)滑块在CD段上运动的总路程。2014年北京市海淀区高三零模试卷本部分共20小题,每小题6分,共120分,在每小题列出的四个选项中,选出最符合题目要求的一项。13.下列说法中正确的是A.外界对物体做功,物体的内能一定增加B.物体的温度升高,物体内所有分子的动能都增大C.在分子相互靠近的过程中,分子势能一定增大D.在分子相互远离的过程中,分子引力和斥力都减小14.下列说法中正确的是A.光是一种概率波,物质波也是概率波B.麦克斯韦首次通过实验证实了电磁波的存在C.某单色光从一种介质进入到另一种介质,其频率和波长都将改变D.紫光照射某金属时有电子向外发射,红光照射该金属时也一定有电子向外发射nnE/eV∞43210-0.85-1.51-3.4-13.615.图中所示为氢原子能级示意图的一部分,则关于氢原子发生能级跃迁的过程中,下列说法中正确的是A.从高能级向低能级跃迁,氢原子放出光子B.从高能级向低能级跃迁,氢原子核外电子轨道半径变大C.从高能级向低能级跃迁,氢原子核向外放出能量D.从能级跃迁到能级比从能级跃迁到能级辐射出电磁波的波长短16.如图甲所示,水平的光滑杆上有一弹簧振子,振子以O点为平衡位置,在a、b两点之间做简谐运动,其振动图象如图乙所示。由振动图象可以得知A.振子的振动周期等于t1B.在t=0时刻,振子的位置在a点C.在t=t1时刻,振子的速度为零D.从t1到t2,振子正从O点向b点运动17.“神舟十号”飞船绕地球的运行可视为匀速圆周运动,其轨道高度距离地面约340km,则关于飞船的运行,下列说法中正确的是A.飞船处于平衡状态B.地球对飞船的万有引力提供飞船运行的向心力C.飞船运行的速度大于第一宇宙速度D.飞船运行的加速度大于地球表面的重力加速度ER电流传感器12SC甲t0I12乙ER电流传感器12SC甲t0I12乙甲A.在形成电流曲线1的过程中,电容器两极板间电压逐渐减小甲B.在形成电流曲线2的过程中,电容器的电容逐渐减小C.曲线1与横轴所围面积等于曲线2与横轴所围面积D.S接1端,只要时间足够长,电容器两极板间的电压就能大于电源电动势E19.如图甲所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。在物块放到木板上之后,木板运动的速度-时间图象可能是图乙中的20.电子感应加速器的基本原理如图所示。在上、下两个电磁铁形成的异名磁极之间有一个环形真空室。图甲为侧视图,图乙为真空室的俯视图。电磁铁中通以交变电流,使两极间的磁场周期性变化,从而在真空室内产生感生电场,将电子从电子枪右端注入真空室,电子在感生电场的作用下被加速,同时在洛伦兹力的作用下,在真空室中沿逆时针方向(图乙中箭头方向)做圆周运动。由于感生电场的周期性变化使电子只能在某段时间内被加速,但由于电子的质量很小,故在极短时间内被加速的电子可在真空室内回旋数10万以至数百万次,并获得很高的能量。若磁场的磁感应强度B(图乙中垂直纸面向外为正)随时间变化的关系如图丙所示,不考虑电子质量的变化,则下列说法中正确的是A.电子在真空室中做匀速圆周运动B.电子在运动时的加速度始终指向圆心C.在丙图所示的第一个周期中,电子只能在0~内按图乙中逆时针方向做圆周运动且被加速D.在丙图所示的第一个周期中,电子在0~和~T内均能按图乙中逆时针方向做圆周运动且被加速第二部分(非选择题共180分)本部分共11小题,共180分。21.(18分)(1)某同学通过实验测量一根长度为L的电阻丝的电阻率。①由图甲可知电阻丝的直径D=________mm。②将如下实验操作补充完整:按图乙连接电路,将滑动变阻器R1的滑片P置于B端;将S2拨向接点1,闭合S1,调节R1,使电流表示数为I0;将电阻箱R2的阻值调至最大,S2拨向接点2,,使电流表示数仍为I0,记录此时电阻箱的示数为R2。甲0甲045035403045ErBAPR1S1R2电阻丝12S2乙A③此电阻丝的电阻率的表达式。(用已知量和所测物理量的字母表示)(2)某同学用如图甲所示的装置通过研究重锤的落体运动来验证机械能守恒定律。已知重力加速度为g。①在实验所需的物理量中,需要直接测量的是,通过计算得到的是。(填写代号)A.重锤的质量B.重锤下落的高度C.重锤底部距水平地面的高度D.与下落高度对应的重锤的瞬时速度②在实验得到的纸带中,我们选用如图乙所示的起点O与相邻点之间距离约为2mm的纸带来验证机械能守恒定律。图中A、B、C、D、E、F、G为七个相邻的原始点,F点是第n个点。设相邻点间的时间间隔为T,下列表达式可以用在本实验中计算F点速度vF的是。A.vF=g(nT)B.vF=C.vF=D.vF=乙乙hn-1Ohnhn+1BCDEAFGxn+1xn③若代入图乙中所测的数据,求得在误差范围内等于(用已知量和图乙中测出的物理量表示),即可验证重锤下落过程中机械能守恒。即使在操作及测量无误的前提下,所求也一定会略(选填“大于”或“小于”)后者的计算值,这是实验存在系统误差的必然结果。=4\*GB3④另一名同学利用图乙所示的纸带,分别测量出各点到起始点的距离h,并分别计算出各点的速度v,绘出v2-h图线,如图丙所示。从v2-h图线求得重锤下落的加速度g′=m/s2(保留3位有效数字)。则由上述方法可知,这名同学是通过观察v2-h图线是否过原点,以及判断与(用相关物理量的字母符号表示)在实验误差允许的范围内是否相等,来验证机械能是否守恒的。丙h/丙h/(×10-2m)v2/(m/s)2010.020.030.040.02.04.06.08.050.0NRMANRMA如图所示,两根竖直放置的足够长的光滑平行金属导轨间距为l,导轨上端接有电阻R和一个理想电流表,导轨电阻忽略不计。导轨下部的匀强磁场区域有虚线所示的水平上边界,磁场方向垂直于金属导轨平面向外。质量为m、电阻为r的金属杆MN,从距磁场上边界h处由静止开始沿着金属导轨下落,金属杆进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。金属杆下落过程中始终与导轨垂直且接触良好。已知重力加速度为g,不计空气阻力。求:(1)磁感应强度B的大小;(2)电流稳定后金属杆运动速度的大小;(3)金属杆刚进入磁场时,M、N两端的电压大小。23.(18分)汤姆孙测定电子比荷(电子的电荷量与质量之比)的实验装置如图所示。真空玻璃管内,阴极K发出的电子经加速后,穿过小孔A、C沿中心轴线OP1进入到两块水平正对放置的极板D1、D2间的区域,射出后到达右端的荧光屏上形成光点。若极板D1、D2间无电压,电子将打在荧光屏上的中心P1点;若在极板间施加偏转电压U,则电子将打P2点,P2与P1点的竖直间距为b,水平间距可忽略不计。若再在极板间施加一个方向垂直于纸面向外、磁感应强度为B的匀强磁场(图中未画出),则电子在荧光屏上产生的光点又回到P1点。已知极板的长度为L1,极板间的距离为d,极板右端到荧光屏间的距离为L2。忽略电子的重力及电子间的相互作用。(1)求电子进入极板D1、D2间区域时速度的大小;(2)推导出电子的比荷的表达式;(3)若去掉极板D1、D2间的电压,只保留匀强磁场B,电子通过极板间的磁场区域的轨迹为一个半径为r的圆弧,阴极射线射出极板后落在荧光屏上的P3点。不计P3与P1点的水平间距,求P3与P1点的竖直间距y。24.(20分)如图所示,质量均为m的物体B、C分别与轻质弹簧的两端相栓接,将它们放在倾角为θ=30o的光滑斜面上,静止时弹簧的形变量为x0。斜面底端有固定挡板D,物体C靠在挡板D上。将质量也为m的物体A从斜面上的某点由静止释放,A与B相碰。已知重力加速度为g,弹簧始终处于弹性限度内,不计空气阻力。求:(1)弹簧的劲度系数k;(2)若A与B相碰后粘连在一起开始做简谐运动,当A与B第一次运动到最高点时,C对挡板D的压力恰好为零,求C对挡板D压力的最大值;DAθBC(3)若将A从另一位置由静止释放,A与B相碰后不粘连,但仍立即一起运动,且当B第一次运动到最高点时,C对挡板D的压力也恰好为零。已知A与B相碰后弹簧第一次恢复原长时B的速度大小为,求相碰后A第一次运动达到的最高点与开始DAθBC海淀一模参考答案2014.4(共120分)选择题(共48分,13题~20题每题6分)13.B14.D15.B16.A17.D18.C19.D20.A21.(18分)(1)(共6分)①bda(2分,说明:没有排序扣1分,漏选、错选不得分)②B(2分)③9500(2分)(2)(共12分)①A.adf(3分)B.(3分)C.偏小(2分)②A.2.0(2分)B.9.76(2分)22.(16分)解:(1)滑动摩擦力f=μmg(1分)设滑块的加速度为a1,根据牛顿第二定律F-μmg=ma1(1分)解得a1=9.0m/s2(1分)设滑块运动位移为0.50m时的速度大小为v,根据运动学公式v2=2a1x(2分解得v=3.0m/s(1分)(2)设滑块通过B点时的动能为EkB从A到B运动过程中,依据动能定理有W合=ΔEkFx-fx0=EkB,(4分)解得EkB=4.0J(2分)(3)设滑块沿圆弧轨道上升过程中克服摩擦力做功为Wf,根据动能定理-mgh-Wf=0-EkB(3分)解得Wf=0.50J(1分)23.(18分)解:(1)烟尘颗粒在通道内只受电场力的作用,电场力F=qE(1分)又因为(1分)设烟尘颗粒在通道内运动时加速度为a,根据牛顿第二定律有(2分)解得,方向竖直向下(2分)(2)若通道最上方的颗粒能通过通道,则这些颗粒在竖直方向上有最大的偏转距离这些颗粒在水平方向的位移L=vt(2分)在竖直方向的位移(2分)解得可确定这些颗粒能通过通道因此,除尘过程中烟尘颗粒在竖直方向偏转的最大距离为8.0cm(1分)(3)设每立方米有烟尘颗粒为N0时间t内进入除尘器的颗粒N1=N0hLvt(1分)时间t内吸附在底面上的颗粒N2=N0hʹLvt(1分)则除尘效率=80%(1分)因为当hʹ<h时,当hʹ≥h时,η=1(2分)因此,在除尘器通道大小及颗粒比荷不改变的情况下,可以通过适当增大两金属板间的电压U,或通过适当减小颗粒进入通道的速度v来提高除尘效率。(2分)24.(20分)解:(1)设电子绕氢原子核在第1轨道上做圆周运动的周期为T1,形成的等效电流大小为I1,根据牛顿第二定律有(2分)则有(1分)又因为(2分)有(1分)(2)①设电子在第1轨道上运动的速度大小为v1,根据牛顿第二定律有(1分)电子在第1轨道运动的动能(1分)电子在第1轨道运动时氢原子的能量E1=-k=-k(2分)同理,电子在第n轨道运动时氢原子的能量En=-k=-k(2分)又因为rn=n2r1则有En=-k=-k命题得证。(1分)②由①可知,电子在第1轨道运动时氢原子的能量E1=-k电子在第2轨道运动时氢原子的能量E2==-k(1分)电子从第2轨道跃迁到第1轨道所释放的能量ΔE=(2分)电子在第4轨道运动时氢原子的能量E4==-k(1分)设氢原子电离后电子具有的动能为Ek,根据能量守恒有Ek=E4+ΔE(2分)解得Ek=-k+=(1分)说明:以上各题用其他方法解答正确均可得分。海淀零模物理参考答案选择题(共48分,13题~20题每题6分)13.D14.A15.A16.D17.B18.C19.A20.C21.(18分)(1)(共6分)①0.377~0.379(2分)②(保持R1不变)调节R2(2分)③(2分)(2)(共12分)①B(1分);D(1分)②C(2分)③ghn(2分);小于(2分)=4\*GB3④9.75(9.72~9.78)(2分);g(1分);g′(1分)22.(16分)(1)电流稳定后,导体棒做匀速运动,有BIl=mg解得磁感应强度B=(4分)(2)设电流稳定后导体棒做匀速运动的速度为v,感应电动势E=Blv感应电流I=解得v=(6分)(3)金属杆在进入磁场前,机械能守恒,设进入磁场时的速度为v0,则由机械能守恒定律,有解得此时的电动势E0=Blv0感应电流I0=EQM、N两端的电压UMN=I0R==(6分)23.(18分)解:(1)电子在极板D1、D2间电场力与洛伦兹力的作用下沿中心轴线运动,即受力平衡,设电子的进入极板间时的速度为v。由平衡条件有两极板间电场强度解得(6分)(2)极板间仅有偏转电场时,电子以速度v进入后,水平方向做匀速运动,在电场内的运动时间电子在竖直方向做匀加速运动,设其加速度为a。由牛顿第二定律有F=ma解得加速度电子射出极板时竖直方向的偏转距离(2分)电子射出极板时竖直方向的分速度为vy=at1=电子离开极板间电场后做匀速直线运动,经时间t2到达荧光屏,t2=电子在t2时间在竖直方向运动的距离y2=vyt2=(2分)这样,电子在竖直方向上的总偏移距离b=y1+y2解得电子比荷(2分)OP3y3L2θθrLOP3y3L2θθrL1则(2分)穿出磁场后在竖直方向上移动的距离(2分)则解得(2分)说明:若用其它已知量表示出半径r,结果正确也得分。24.(20分)FGBN(1)物体B静止时,弹簧形变量为x0,弹簧的弹力FFGBN物体B受力如图所示,根据物体平衡条件得kx0=mgsinθ解得弹簧的劲度系数k=(6分)(2)A与B碰后一起做简谐运动到最高点时,物体C对挡板D的压力最小为0则对C,弹簧弹力F弹=mgsinθ,对A、B,回复力最大,F回=3mgsinθ(3分)由简谐运动的对称性,可知A与B碰后一起做简谐运动到最低点时,回复力也最大,即F回=3mgsinθ,此时物体C对挡板D的压力最大对物体A、B有,F弹-2mgsinθ=3mgsinθ则弹簧弹力F弹=5mgsinθ对物体C,设挡板D对物体C的弹力为N,则N=5mgsinθ+mgsinθ=3mg依据牛顿第三定律,物体C对挡板D的压力N=N=3mg物体C对挡板D压力的最大值为3mg(3分)(3)设物体A释放时A与B之间距离为x,A与B相碰前物体A速度的大小为v1。对物体A,从开始下滑到A、B相碰前的过程,根据机械能守恒定律有(解得v1=)①

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论