2023届山西省大同矿区六校联考数学九年级第一学期期末调研模拟试题含解析_第1页
2023届山西省大同矿区六校联考数学九年级第一学期期末调研模拟试题含解析_第2页
2023届山西省大同矿区六校联考数学九年级第一学期期末调研模拟试题含解析_第3页
2023届山西省大同矿区六校联考数学九年级第一学期期末调研模拟试题含解析_第4页
2023届山西省大同矿区六校联考数学九年级第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在平面直角坐标系中,将抛物线y=x2的图象向左平移3个单位、再向下平移2个单位所得的抛物线的函数表达式为()A.y=(x-3)2-2 B.y=(x-3)2+2 C.y=(x+3)2-2 D.y=(x+3)2+22.下列说法中,正确的是()A.如果k=0,是非零向量,那么k=0 B.如果是单位向量,那么=1C.如果||=||,那么=或=﹣ D.已知非零向量,如果向量=﹣5,那么∥3.我们知道:过直线外一点有且只有一条直线和已知直线垂直,如图,已知直线l和l外一点A,用直尺和圆规作图作直线AB,使AB⊥l于点A.下列四个作图中,作法错误的是()A. B.C. D.4.点是反比例函数的图象上的一点,则()A. B.12 C. D.15.二次函数的图象如右图所示,那么一次函数的图象大致是()A. B.C. D.6.下列函数中,一定是二次函数的是()A. B. C. D.7.若关于x的一元二次方程的两根是,则的值为()A. B. C. D.8.在△ABC中,∠C=90°.若AB=3,BC=1,则cosB的值为()A. B. C. D.39.一元二次方程3x2=8x化成一般形式后,其中二次项系数和一次项系数分别是()A.3,8 B.3,0 C.3,-8 D.-3,-810.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A.平均数 B.中位数 C.众数 D.方差11.以半径为2的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则()A.不能构成三角形 B.这个三角形是等腰三角形C.这个三角形是直角三角形 D.这个三角形是钝角三角形12.在平面直角坐标系中,将抛物线向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为()A. B.C. D.二、填空题(每题4分,共24分)13.已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.14.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______.15.已知点A(m,1)与点B(3,n)关于原点对称,则m+n=_________。16.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.17.如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是______.18.已知二次函数中,函数与自变量的部分对应值如下表:…-2-1012……105212…则当时,的取值范围是______.三、解答题(共78分)19.(8分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.20.(8分)如图,的顶点坐标分别为,,.(1)画出关于点的中心对称图形;(2)画出绕原点逆时针旋转的,直接写出点的坐标为_________;(3)若内一点绕原点逆时针旋转的对应点为,则的坐标为____________.(用含,的式子表示)21.(8分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的任意一点。(1)求这个二次函数y=x2+bx+c的解析式。(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C为菱形,求点P的坐标。22.(10分)如图,是的直径,点在上,,FD切于点,连接并延长交于点,点为中点,连接并延长交于点,连接,交于点,连接.(1)求证:;(2)若的半径为,求的长.23.(10分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A,B,C,D四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a的值为;(2)求C等级对应扇形的圆心角的度数;(3)获得A等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.24.(10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,弦PB与CD交于点F,且FC=FB.(1)求证:PD∥CB;(2)若AB=26,EB=8,求CD的长度.25.(12分)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2),直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别相交于点B,C,连接AC.(1)求k和m的值;(2)求点B的坐标;(3)求△ABC的面积.26.在平面直角坐标系中,将一块等腰直角三角板(△ABC)按如图所示放置,若AO=2,OC=1,∠ACB=90°.(1)直接写出点B的坐标是;(2)如果抛物线l:y=ax2﹣ax﹣2经过点B,试求抛物线l的解析式;(3)把△ABC绕着点C逆时针旋转90°后,顶点A的对应点A1是否在抛物线l上?为什么?(4)在x轴上方,抛物线l上是否存在一点P,使由点A,C,B,P构成的四边形为中心对称图形?若存在,求出点P的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【解析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,然后利用顶点式写出新抛物线解析式即可.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,所以平移后的抛物线解析式为y=(x+3)2-2.故选:C.【点睛】考查二次函数的平移,掌握二次函数平移的规律是解题的关键.2、D【分析】根据平面向量的性质一一判断即可.【详解】解:A、如果k=0,是非零向量,那么k=0,错误,应该是k=.B、如果是单位向量,那么=1,错误.应该是=1.C、如果||=||,那么=或=﹣,错误.模相等的向量,不一定平行.D、已知非零向量,如果向量=﹣5,那么∥,正确.故选:D.【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.3、C【分析】根据垂线的作法即可判断.【详解】观察作图过程可知:A.作法正确,不符合题意;B.作法正确,不符合题意;C.作法错误,符号题意;D.作法正确,不符合题意.故选:C.【点睛】本题考查了作图-复杂作图、垂线,解决本题的关键是掌握作垂线的方法.4、A【解析】将点代入即可得出k的值.【详解】解:将点代入得,,解得k=-12,故选:A.【点睛】本题考查反比例函数图象上点,若一个点在某个函数图象上,则这个点一定满足该函数的解析式.5、D【分析】可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误.【详解】解:由二次函数图象,得出a>0,,b<0,

A、由一次函数图象,得a<0,b>0,故A错误;

B、由一次函数图象,得a>0,b>0,故B错误;

C、由一次函数图象,得a<0,b<0,故C错误;

D、由一次函数图象,得a>0,b<0,故D正确.

故选:D.【点睛】本题考查了二次函数图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.6、A【分析】根据二次函数的定义逐个判断即可.【详解】A、是二次函数,故本选项符合题意;

B、当a=0时,函数不是二次函数,故本选项不符合题意;

C、不是二次函数,故本选项不符合题意;

D、不是二次函数,故本选项不符合题意;

故选:A.【点睛】此题考查二次函数的定义,能熟记二次函数的定义的内容是解题的关键.7、A【分析】利用一元二次方程的根与系数的关系即可求解.【详解】由题意可得:则故选:A.【点睛】本题考查了一元二次方程的根与系数的关系,对于一般形式,设其两个实数根分别为,则方程的根与系数的关系为:.8、A【分析】直接利用锐角三角函数关系的答案.【详解】如图所示:∵AB=3,BC=1,∴cosB==.故选:A.【点睛】考核知识点:余弦.熟记余弦定义是关键.9、C【分析】要确定二次项系数,一次项系数,常数项,首先要把方程化成一般形式.【详解】解:∴二次项系数是,一次项系数是.故选:C【点睛】本题考查了一元二次方程的一般形式:(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.10、B【分析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B.【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性.11、C【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,问题得解.【详解】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵12+()2=()2,∴该三角形是直角三角形,故选:C.【点睛】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.12、B【分析】直接关键二次函数的平移规律“左加右减,上加下减”解答即可.【详解】将抛物线向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为:故选:B【点睛】本题考查的是二次函数的平移,掌握其平移规律是关键,需注意:二次函数平移时必须化成顶点式.二、填空题(每题4分,共24分)13、.【分析】根据三角形的任意两边之和大于第三边判断出a最小为2,b最小是3,再根据二次函数的增减性和对称性判断出对称轴小于2.5,然后列出不等式求解即可:【详解】解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,b最小是3.∴根据二次函数的增减性和对称性知,的对称轴的左侧,∵,∴.∴实数m的取值范围是.考点:1.二次函数图象上点的坐标特征;2.二次函数的性质;3.三角形三边关系.14、【分析】首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.【详解】解:圆锥的底面周长是:,设圆心角的度数是,则,解得:.故侧面展开图的圆心角的度数是.故答案是:.【点睛】此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15、-1【分析】根据两个点关于原点对称时,它们的坐标符号相反,可直接得到m=-3,n=-1进而得到答案.【详解】解:∵点A(m,1)与点B(3,n)关于原点对称,

∴m=-3,n=-1,

∴m+n=-1,

故答案为:-1.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.16、【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形.17、k≤且k≠﹣1【解析】因为一元二次方程有实数根,所以△≥2且k+1≠2,得关于k的不等式,求解即可.【详解】∵关于x的一元二次方程(k+1)x1﹣3x+1=2有实数根,∴△≥2且k+1≠2,即(﹣3)1﹣4(k+1)×1≥2且k+1≠2,整理得:﹣4k≥﹣1且k+1≠2,∴k且k≠﹣1.故答案为k且k≠﹣1.【点睛】本题考查了一元二次方程根的判别式.解决本题的关键是能正确计算根的判别式.本题易忽略二次项系数不为2.18、【分析】观察表格可得:(0,2)与(2,2)在抛物线上,由此可得抛物线的对称轴是直线x=1,顶点坐标是(1,1),且抛物线开口向上,于是可得点(-1,5)与(3,5)关于直线x=1对称,进而可得答案.【详解】解:根据表格中的数据可知:(0,2)与(2,2)关于直线x=1对称,所以抛物线的对称轴是直线x=1,顶点坐标是(1,1),且抛物线开口向上,∴点(-1,5)与(3,5)关于直线x=1对称,∴当时,的取值范围是:.故答案为:.【点睛】本题考查了抛物线的性质,通过观察得出抛物线的对称轴是直线x=1,灵活利用抛物线的对称性是解题的关键.三、解答题(共78分)19、(1);(2)棋子最终跳动到点C处的概率为.【解析】(1)和为8时,可以到达点C,根据概率公式计算即可;(2)列表得到所有的情况数,然后再找到符合条件的情况数,利用概率公式进行求解即可.【详解】随机掷一次骰子,骰子向上三个面(除底面外)的数字之和可以是6、7、8、9.(1)随机掷一次骰子,满足棋子跳动到点C处的数字是8,则棋子跳动到点C处的概率是,故答案为;(2)列表得:987699,98,97,96,989,88,87,86,879,78,77,76,769,68,67,66,6共有16种可能,和为14可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为.【点睛】本题考查列表法与树状图,概率公式等知识,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20、(1)详见解析;(2)图详见解析,点的坐标为;(3)的坐标为.【分析】(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;

(2)利用网格特点和旋转的性质画出A2、B2、C2,从而得到C2点的坐标;

(3)利用(2)中对应点的坐标变换规律写出Q的坐标.【详解】解:(1)如图,为所作;(2)如图,为所作;点的坐标为(3)由(2)中的规律可知的坐标为.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21、(1)二次函数的解析式为;(2)P()时,四边形POP′C为菱形.【分析】(1)将点B、C的坐标代入解方程组即可得到函数解析式;(2)根据四边形POP′C为菱形,得到,且与OC互相垂直平分,可知点P的纵坐标为,将点P的纵坐标代入解析式即可得到横坐标,由此得到答案.【详解】(1)将点B(3,0)、C(0,﹣3)的坐标代入y=x2+bx+c,得,∴∴二次函数的解析式为;(2)如图,令中x=0,得y=-3,∴C(0,-3)∵四边形POP′C为菱形,∴,且与OC互相垂直平分,∴点P的纵坐标为,当y=时,,得:,∵点P是直线BC下方抛物线上的任意一点,∴P()时,四边形POP′C为菱形.【点睛】此题考查二次函数的待定系数法求解析式、菱形的性质,(2)根据菱形的对角线互相垂直平分得到点P的纵坐标,由此解答问题.22、(1)证明见解析;(2).【分析】(1)利用圆周角定理及,求得∠ABC=30°,利用切线的性质求得∠D=30°,根据直角三角形30度角的性质从而证出;(2)先证得△OAC为等边三角形,求得的长,过点C作CM⊥AO于点M,证出△CME∽△FBE,求出,利用勾股定理求出,利用面积法即可求出.【详解】(1)连接BC,∵AB是⊙O的直径,,

∴∠ACB=90°,∠ABC=30°,∠BAC=60°,

∴,

∵BD切于点,

∴AB⊥DB,

∴∠D=90∠BAD=9060°=30°,∴AD=2AB,∴AD=4AC,∴;(2)连接OC,过点C作CM⊥AO于点M,∵∠BAC=60°,OA=OC,∴△OAC为等边三角形,∴AC=OA=OC=2,OM=MA=1,∵CM⊥AO,∴OM=MA==1,在中,,,∴,∵点为中点,∴,∴,∵BF切于点,

∴AB⊥FB,

∴∠FBE=90,∵∠FEB=∠CEM,∴,∴,即,∴,在中,,,,∴,∵AB是⊙O的直径

∴∠AGB=90°,∴BG⊥AF,∵,∴,∴【点睛】本题是圆的综合题,考查了切线的性质、相似三角形的判定与性质、圆周角定理、勾股定理以及三角形面积的计算,学会添加常用辅助线,熟练掌握圆周角定理,并能进行推理计算是解决问题的关键.23、(1)8;(2);(3)【分析】(1)根据D等级的人数除以其百分比得到班级总人数,再乘以B等级的百分比即可得a的值;(2)用C等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数;(3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可【详解】解:(1)班级总人数为人,B等级的人数为人,故a的值为8;(2)∴C等级对应扇形的圆心角的度数为.(3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.∴P(一男一女)答:恰好选中一男一女参加比赛的概率为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A的结果数目m,然后利用概率公式计算事件A的概率为.也考查了统计图.24、(1)证明见解析;(2)CD=1.【解析】(1)欲证明PD∥BC,只要证明∠P=∠CBF即可;(2)由△ACE∽△CBE,可得,求出EC,再根据垂径定理即可解决问题.【详解】(1)证明:∵FC=FB,∴∠C=∠CBF,∵∠P=∠C,∴∠P=∠CBF,∴PD∥BC.(2)连接AC,∵AB是直径,∴∠ACB=90°,∵AB⊥CD,∴CE=ED,∠AEC=∠CEB=90°,∵∠CAE+∠ACE=90°,∠ACE+∠BCE=90°,∴∠CAE=∠BCE,∴△ACE∽△CBE,∴,∴,∴EC2=144,∵EC>0,∴EC=12,∴CD=2EC=1.【点睛】本题考查圆周角定理,垂径定理,平行线的判定,等腰三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.25、(1)k的值为1,m的值为2;(2)点B的坐标为(3,4);(3)△ABC的面积是.【分析】(1)将点代入一次函数和反比例函数的解析式计算即可得;(2)先可得点B的横坐标,再将其代入一次函数解析式可求出纵坐标,即可得答案;(3)如图(见解析),过点A作于点D,先求出点C的坐标,再利用A、B、C三点的坐标可求出BC、AD的长,从而可得的面积.【详解】(1)是一次函数与反比例函数的公共点解得:故k的值为1,m的值为2;(2)∵直线轴于点,且与一次函数的图象交于点B∴点B的横坐标为3把代入得:故点B的坐标为;(3)如图,过点A作于点D依题意可得点C的横坐标为3把代入得:则又因AD的长等于点N的横坐标减去点A的横坐标,即则故的面积是.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论