2023届江苏省兴化市数学九年级第一学期期末联考模拟试题含解析_第1页
2023届江苏省兴化市数学九年级第一学期期末联考模拟试题含解析_第2页
2023届江苏省兴化市数学九年级第一学期期末联考模拟试题含解析_第3页
2023届江苏省兴化市数学九年级第一学期期末联考模拟试题含解析_第4页
2023届江苏省兴化市数学九年级第一学期期末联考模拟试题含解析_第5页
免费预览已结束,剩余21页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤2.如图,在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8 B.3∶8 C.3∶5 D.2∶53.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.4.如图,是抛物线的图象,根据图象信息分析下列结论:①;②;③;④.其中正确的结论是()A.①②③ B.①②④ C.②③④ D.①②③④5.2019年教育部等九部门印发中小学生减负三十条:严控书面作业总量,初中家庭作业不超过90分钟.某初中学校为了尽快落实减负三十条,了解学生做书面家庭作业的时间,随机调查了40名同学每天做书面家庭作业的时间,情况如下表.下列关于40名同学每天做书面家庭作业的时间说法中,错误的是()书面家庭作业时间(分钟)708090100110学生人数(人)472072A.众数是90分钟 B.估计全校每天做书面家庭作业的平均时间是89分钟C.中位数是90分钟 D.估计全校每天做书面家庭作业的时间超过90分钟的有9人6.如图,在中,点在边上,连接,点在线段上,,且交于点,,且交于点,则下列结论错误的是()A. B. C. D.7.用配方法解方程x2-4x+3=0时,原方程应变形为()A.(x+1)2=1 B.(x-1)2=1 C.(x+2)2=1 D.(x-2)2=18.涞水县某种植基地2018年蔬菜产量为100吨,预计2020年蔬菜产量达到120吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. B.C. D.9.如图,两条直线被三条平行线所截,若,则()A. B. C. D.10.两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离地的距离与时间的关系,结合图象,下列结论错误的是()A.是表示甲离地的距离与时间关系的图象B.乙的速度是C.两人相遇时间在D.当甲到达终点时乙距离终点还有11.方程的根是()A. B.C. D.12.如图,与是以坐标原点为位似中心的位似图形,若点是的中点,的面积是6,则的面积为()A.9 B.12 C.18 D.24二、填空题(每题4分,共24分)13.反比例函数的图象在一、三象限,函数图象上有两点A(,y1,)、B(5,y2),则y1与y2,的大小关系是__________14.如图,正方形ABCD中,P为AD上一点,BP⊥PE交BC的延长线于点E,若AB=6,AP=4,则CE的长为_____.15.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.1.其中正确的结论是_____.(把你认为正确结论的序号都填上)16.如图,点为等边三角形的外心,连接.①___________.②弧以为圆心,为半径,则图中阴影部分的面积等于__________.17.如图,四边形是菱形,经过点、、与相交于点,连接、,若,则的度数为__________.18.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.三、解答题(共78分)19.(8分)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.20.(8分)如图,是的直径,点在的延长线上,平分交于点,且的延长线,垂足为点.(1)求证:直线是的切线;(2)若,,求的长.21.(8分)数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.22.(10分)如图,直线与轴交于点,与轴交于点,把沿轴对折,点落到点处,过点、的抛物线与直线交于点、.(1)求直线和抛物线的解析式;(2)在直线上方的抛物线上求一点,使面积最大,求出点坐标;(3)在第一象限内的抛物线上,是否存在一点,作垂直于轴,垂足为点,使得以、、为项点的三角形与相似?若存在,求出点的坐标:若不存在,请说明理由.23.(10分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO=10,则⊙O的半径长为_______.24.(10分)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-1.其图象如图所示.⑴a=;b=;⑵销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?⑶由图象可知,销售单价x在时,该种商品每天的销售利润不低于16元?25.(12分)如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,圆O经过A、C、E三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=______.26.如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.2、A【解析】∵DE∥BC,EF∥AB,∴,,∴,∴,∴,即.故选A.点睛:若,则,.3、B【详解】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选B.考点:作图—复杂作图4、D【分析】采用数形结合的方法解题,根据抛物线的开口方向,对称轴,与x、y轴的交点,通过推算进行判断.【详解】①根据抛物线对称轴可得,,正确;②当,,根据二次函数开口向下和得,和,所以,正确;③二次函数与x轴有两个交点,故,正确;④由题意得,当和时,y的值相等,当,,所以当,,正确;故答案为:D.【点睛】本题考查了二次函数的性质和判断,掌握二次函数的性质是解题的关键.5、D【分析】利用众数、中位数及平均数的定义分别确定后即可得到本题的正确的选项.【详解】解:A、书面家庭作业时间为90分钟的有20人,最多,故众数为90分钟,正确;B、共40人,中位数是第20和第21人的平均数,即=90,正确;C、平均时间为:×(70×4+80×7+90×20+100×8+110)=89,正确;D、随机调查了40名同学中,每天做书面家庭作业的时间超过90分钟的有8+1=9人,故估计全校每天做书面家庭作业的时间超过90分钟的有9人说法错误,故选:D.【点睛】本题考查了众数、中位数及平均数的定义,属于统计基础题,比较简单.6、C【分析】根据平行线截得的线段对应成比例以及相似三角形的性质定理,逐一判断选项,即可得到答案.【详解】∵,,∴,∴A正确,∵,∴,∴B正确,∵∆DFG~∆DCA,∆AEG~∆ABD,∴,,∴,∴C错误,∵,,∴,∴D正确,故选C.【点睛】本题主要考查平行线截线段定理以及相似三角形的性质定理,掌握平行线截得的线段对应成比例是解题的关键.7、D【分析】根据配方时需在方程的左右两边同时加上一次项系数一半的平方解答即可.【详解】移项,得

x2-4x=-3,配方,得

x2-2x+4=-3+4,即(x-2)2=1

,故选:D.【点睛】本题考查了一元二次方程的解法—配方法,熟练掌握配方时需在方程的左右两边同时加上一次项系数一半的平方是解题的关键.8、A【分析】根据2020年的产量=2018年的产量×(1+年平均增长率)2,把相关数值代入即可.【详解】解:设该种植基地蔬菜产量的年平均增长率(百分数)为x,根据题意,得,故选A.【点睛】此题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2020年的产量的代数式,根据条件找准等量关系,列出方程.9、D【解析】先根据平行线分线段成比例定理求出DF的长,然后可求出BF的长.【详解】,,即,解得,,,故选:.【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.10、C【分析】根据图像获取所需信息,再结合行程问题量间的关系进行解答即可.【详解】解:A.是表示甲离地的距离与时间关系的图象是正确的;B.乙用时3小时,乙的速度,90÷3=,故选项B正确;C.设甲对应的函数解析式为y=ax+b,则有:解得:∴甲对应的函数解析式为y=-45x+90,设乙对应的函数解析式为y=cx+d,则有:解得:即乙对应的函数解析式为y=30x-15则有:解得:x=1.4h,故C选项错误;D.当甲到达终点时乙距离终点还有90-40×1.4=45km,故选项D正确;故答案为C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意、从图像中获取问题需要的条件以及数形结合的思想的应用是解答本题的关键.11、A【分析】利用直接开平方法进行求解即可得答案.【详解】,x-1=0,∴x1=x2=1,故选A.【点睛】本题考查解一元二次方程,根据方程的特点选择恰当的方法是解题的关键.12、D【分析】根据位似图形的性质,再结合点A与点的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】解:∵△ABC与△是以坐标原点O为位似中心的位似图形,且A为的中心,∴△ABC与△的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△的面积等于4倍的△ABC的面积,即.故答案为:D.【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据反比例函数的性质,双曲线的两支分别位于第一、第三象限时k>0,在每一象限内y随x的增大而减小,可得答案.【详解】解:∵反比例函数的图象在一、三象限,∴,∴在每一象限内y随x的增大而减小,∵,∴;故答案为:.【点睛】此题主要考查了反比例函数的性质,关键是掌握反比例函数(k≠0),当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.14、2【分析】利用同角的余角相等可得出∠ABP=∠DPF,结合∠A=∠D可得出△APB∽△DFP,利用相似三角形的性质可求出DF的长,进而可得出CF的长,由∠PFD=∠EFC,∠D=∠ECF可得出△PFD∽△EFC,再利用相似三角形的性质可求出CE的长.【详解】∵四边形ABCD为正方形,∴∠A=∠D=∠ECF=90°,AB=AD=CD=6,∴DP=AD﹣AP=1.∵BP⊥PE,∴∠BPE=90°,∴∠APB+∠DPF=90°.∵∠APB+∠ABP=90°,∴∠ABP=∠DPF.又∵∠A=∠D,∴△APB∽△DFP,∴,即,∴DF=,∴CF=.∵∠PFD=∠EFC,∠D=∠ECF,∴△PFD∽△EFC,∴=,即,∴CE=2.故答案为:2.【点睛】此题考查相似三角形判定与性质以及正方形的性质,利用相似三角形的判定定理,找出△APB∽△DFP及△PFD∽△EFC是解题的关键.15、①、②、④.【分析】①先利用等腰三角形的性质可得一组角相等,又因有一组公共角,所以由三角形相似的判定定理即可得;②根据为等腰三角形,加上、AB的值可得出底边CD的值,从而可找到两个三角形有一组相等的边,在加上①中两组相等的角,即可证明全等;③因只已知为直角三角形,所以要分两种情况考虑,利用三角形相似可得为直角三角形,再结合的值即可求得BD;④设,则,由∽得,从而可得出含x的等式,化简分析即可得.【详解】①(等边对等角)又∽,所以①正确;②作于H,如图在中,又由等腰三角形三线合一性质得,当时,则又在和中,,所以②正确;③为直角三角形,有两种情况:当时,如图1∽在中,可解得当时,如图2在中,可解得综上或,所以③不正确;④设,则由∽得,即故,所以④正确.综上,正确的结论有①②④.【点睛】本题考查了等腰三角形的定义和性质、三角形全等的判定、相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合.16、120【分析】①连接OC利用等边三角形的性质可得出,可得出的度数②阴影部分的面积即求扇形AOC的面积,利用面积公式求解即可.【详解】解:①连接OC,∵O为三角形的外心,∴OA=OB=OC∴∴∴.②∵∴∴阴影部分的面积即求扇形AOC的面积∵∴阴影部分的面积为:.【点睛】本题考查的知识点有等边三角形外心的性质,全等三角形的判定及其性质以及扇形的面积公式,利用三角形外心的性质得出OA=OB=OC是解题的关键.17、【分析】根据菱形的性质得到∠ACB=∠DCB=(180°−∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【详解】解:∵四边形ABCD是菱形,∠D=78°,

∴∠ACB=∠DCB=(180°−∠D)=51°,

∵四边形AECD是圆内接四边形,

∴∠AEB=∠D=78°,

∴∠EAC=∠AEB−∠ACE=27°,

故答案为:27°.【点睛】本题考查了菱形的性质,三角形的外角的性质,圆内接四边形的性质,熟练掌握菱形的性质是解题的关键.18、.【解析】分析:根据“反比例函数的图象所处象限与的关系”进行解答即可.详解:∵反比例函数的图象在第一、三象限内,∴,解得:.故答案为.点睛:熟记“反比例函数的图象所处象限与的关系:(1)当时,反比例函数的图象在第一、三象限;(2)当时,反比例函数的图象在第二、四象限.”是正确解答本题的关键.三、解答题(共78分)19、(1)李明应该把铁丝剪成12cm和28cm的两段;(2)李明的说法正确,理由见解析.【解析】试题分析:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确.试题解析:设其中一段的长度为cm,两个正方形面积之和为cm2,则,(其中),当时,,解这个方程,得,,∴应将之剪成12cm和28cm的两段;(2)两正方形面积之和为48时,,,∵,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.考点:1.一元二次方程的应用;2.几何图形问题.20、(1)见解析;(2)【分析】(1)连接OC,由角平分线的性质和等腰三角形的性质可得∠DAC=∠EAC,可得AE∥OC,由平行线的性质可得∠OCD=90°,可得结论;

(2)利用勾股定理得出CD,再利用平行线分线段成比例进行计算即可.【详解】证明:(1)连接∵,∴,∵,∴,∴,∵∴,∴,∴是的切线(2)∵,∴,又∵,∴∵,∴∴∴∴.【点睛】此题考查切线的判定和性质,等腰三角形的性质,平行线分线段成比例,熟练运用切线的判定和性质是解题的关键.21、(1)详见解析;(2)3.【解析】(1)根据正方形的性质,得△ADG≌△ABE,所以∠AGD=∠AEB.延长EB交DG于点H.由图形及题意,得到∠DHE=90°,所以,.(2)根据正方形的性质等,先证明△ADG≌△ABE(SAS),得到DG=BE.过点A作AM⊥DG交DG于点M.由题意,得AM=BD=1,再由勾股定理,得到GM=2,所以DG=DM+GM=1+2=3,最后得到BE=DG=3.【详解】(1)四边形ABCD与四边形AEFG是正方形∴AD=AB,∠DAG=∠BAE=90°,AG=AE∴△ADG≌△ABE∴∠AGD=∠AEB如图1,延长EB交DG于点H△ADG中∠AGD+∠ADG=90°∴∠AEB+∠ADG=90°△DEH中,∠AEB+∠ADG+∠DHE=180°∴∠DHE=90°∴(2)四边形ABCD与四边形AEFG是正方形∴AD=AB,∠DAB=∠GAE=90°,AG=AE∴∠DAB+∠BAG=∠GAE+∠BAG∴∠DAG=∠BAEAD=AB,∠DAG=∠BAE,AG=AE∴△ADG≌△ABE(SAS)∴DG=BE如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°BD是正方形ABCD的对角线∴∠MDA=∠MDA=∠MAB=45°,BD=2∴AM=BD=1在Rt△AMG中,∵∴GM=2∵DG=DM+GM=1+2=3∴BE=DG=3【点睛】本题考查了三角形全等判定定理及勾股定理在图形证明中的综合运用,熟练掌握三角形全等判定定理及勾股定理在图形证明中的综合运用.22、(1);(2);(3)存在,或.【分析】(1)由直线可以求出A,B的坐标,由待定系数法就可以求出抛物线的解析式和直线BD的解析式;(2)先求得点D的坐标,作EF∥y轴交直线BD于F,设,利用三角形面积公式求得,再利用二次函数性质即可求得答案;(3)如图1,2,分类讨论,当△BOC∽△MON或△BOC∽△ONM时,由相似三角形的性质就可以求出结论;【详解】(1)∵直线AB为,令y=0,则,令,则y=2,∴点A、B的坐标分别是:A(-1,0),B(0,2),根据对折的性质:点C的坐标是:(1,0),设直线BD解析式为,把B(0,2),C(1,0)代入,得,解得:,,∴直线BD解析式为,把A(-1,0),B(0,2)代入得,解得:,,∴抛物线的解析式为;(2)解方程组得:和,∴点D坐标为(3,-4),作EF∥y轴交直线BD于F设∴(0<<3)∴当时,三角形面积最大,此时,点的坐标为:;(3)存在.∵点B、C的坐标分别是B(0,2)、C(1,0),∴,,①如图1所示,当△MON∽△BCO时,∴,即,∴,设,则,将代入抛物线的解析式得:解得:(不合题意,舍去),,∴点M的坐标为(1,2);②如图2所示,当△MON∽△CBO时,∴,即,∴MN=ON,设,则M(b,b),将M(b,b)代入抛物线的解析式得:∴解得:(不合题意,舍去),,∴点M的坐标为(,),∴存在这样的点或.【点睛】本题考查了待定系数法求二次函数的解析式,一次函数的解析式的运用,相似三角形的性质的运用,解答时求出函数的解析式是关键.23、2【解析】分析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得,再将OA、BD、BH的长度代入即可求得OF的长度.详解:如图所示:作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=320,∴DH=16,在Rt△ADH中,AH=∴HB=AB-AH=8,在Rt△BDH中,BD=,设⊙O与AB相切于F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论