2022年湖北省襄阳市第三十四中学九年级数学第一学期期末考试试题含解析_第1页
2022年湖北省襄阳市第三十四中学九年级数学第一学期期末考试试题含解析_第2页
2022年湖北省襄阳市第三十四中学九年级数学第一学期期末考试试题含解析_第3页
2022年湖北省襄阳市第三十四中学九年级数学第一学期期末考试试题含解析_第4页
2022年湖北省襄阳市第三十四中学九年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.用10长的铝材制成一个矩形窗框,使它的面积为6.若设它的一条边长为,则根据题意可列出关于的方程为()A. B. C. D.2.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.3.关于的一元二次方程有实数根,则的取值范围是()A. B.且 C. D.且4.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm5.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.16.如果点与点关于原点对称,则()A.8 B.2 C. D.7.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是2cm,则这个正六边形的周长是()A.12 B.6 C.36 D.128.二次函数(是常数,)的自变量与函数值的部分对应值如下表:…012………且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是()A.0 B.1 C.2 D.39.在Rt△ABC中,∠C=90°,如果,那么的值是()A. B. C. D.310.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为().A.相离 B.相切 C.相交 D.无法确定11.有一组数据:2,﹣2,2,4,6,7这组数据的中位数为()A.2 B.3 C.4 D.612.关于的方程的一个根是,则它的另一个根是()A. B. C. D.二、填空题(每题4分,共24分)13.在实数范围内分解因式:-1+9a4=____________________。14.已知反比例函数,在其位于第三像限内的图像上有一点M,从M点向y轴引垂线与y轴交于点N,连接M与坐标原点O,则ΔMNO面积是_____.15.在一个不透明的袋中装有12个红球和若干个白球,它们除颜色外都相同从袋中随机摸出一个球,记下颜色后放回,并搅均,不断重复上述的试验共5000次,其中2000次摸到红球,请估计袋中大约有白球______个16.若a是方程x2-x-1=0的一个根,则2a2-2a+5=________.17.一个口袋中有红球、白球共10个,这些球除色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有60次摸到红球.请你估计这个口袋中有_____个白球.18.如图,边长为4的正六边形内接于,则的内接正三角形的边长为______________.三、解答题(共78分)19.(8分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.(1)求S与x的函数关系式及x值的取值范围;(1)要围成面积为45m1的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?20.(8分)如图,E、F分别为线段AC上的两个点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF.求证:BF=DE.21.(8分)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,求图中阴影部分的面积.22.(10分)用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cmB.6cm×4.5cmC.7cm×4cmD.7cm×4.5cm23.(10分)在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)直接写出:b的值为;c的值为;点A的坐标为;(2)点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.①如图1,过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;②若△CDM为等腰直角三角形,直接写出点M的坐标.24.(10分)某次足球比赛,队员甲在前场给队友乙掷界外球.如图所示:已知两人相距8米,足球出手时的高度为2.4米,运行的路线是抛物线,当足球运行的水平距离为2米时,足球达到最大高度4米.请你根据图中所建坐标系,求出抛物线的表达式.25.(12分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路线为弧BD求图中阴影部分的面积.26.如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.

参考答案一、选择题(每题4分,共48分)1、A【分析】一边长为xm,则另外一边长为(5﹣x)m,根据它的面积为1m2,即可列出方程式.【详解】一边长为xm,则另外一边长为(5﹣x)m,由题意得:x(5﹣x)=1.故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.2、C【解析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.3、B【分析】判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.关于x的一元二次方程kx2+3x-1=1有实数根,则△=b2-4ac≥1.【详解】解:∵a=k,b=3,c=-1,

∴△=b2-4ac=32+4×k×1=9+4k≥1,,

∵k是二次项系数不能为1,k≠1,

即且k≠1.

故选:B.【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.4、C【分析】点D所转过的路径长是一段弧,是一段圆心角为180°,半径为OD的弧,故根据弧长公式计算即可.【详解】解:BD=4,

∴OD=2

∴点D所转过的路径长==2π.

故选:C.【点睛】本题主要考查了弧长公式:.5、D【详解】连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE.∵E是AC中点,∴DE=EH.∴△DCE≌△HAE(AAS).∴DE=HE,DC=AH.∵F是BD中点,∴EF是△DHB的中位线.∴EF=BH.∴BH=AB﹣AH=AB﹣DC=2.∴EF=2.故选D.6、C【分析】根据两个点关于原点对称时,它们横坐标对应的符号、纵坐标对应的符号分别相反,可直接得到m=3,n=-5进而得到答案.【详解】解:∵点A(3,n)与点B(-m,5)关于原点对称,

∴m=3,n=-5,

∴m+n=-2,

故选:C.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.7、D【分析】由正六边形的性质证出△AOB是等边三角形,由等边三角形的性质得出AB=OA,即可得出答案【详解】设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2cm,∴△AOB是等边三角形,∴AB=OA=2cm,∴正六边形ABCDEF的周长=6AB=12cm.故选D【点睛】此题主要考查了正多边形和圆、等边三角形的判定与性质;根据题意得出△AOB是等边三角形是解题关键.8、C【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-=;∴a、b异号,且b=-a;∵当x=0时y=c=-2∴c∴abc0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴和3是关于的方程的两个根;故②正确;∵b=-a,c=-2∴二次函数解析式:∵当时,与其对应的函数值.∴,∴a;∵当x=-1和x=2时的函数值分别为m和n,∴m=n=2a-2,∴m+n=4a-4;故③错误故选C.【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量与函数值的值结合二次函数的性质逐条分析给定的结论是关键.9、A【解析】一个角的正弦值等于它的余角的余弦值.【详解】∵Rt△ABC中,∠C=90°,sinA=,∴cosA===,∴∠A+∠B=90°,∴sinB=cosA=.故选A.【点睛】本题主要考查锐角三角函数的定义,根据sinA得出cosA的值是解题的关键.10、C【解析】试题分析:半径r=5,圆心到直线的距离d=3,∵5>3,即r>d,∴直线和圆相交,故选C.【考点】直线与圆的位置关系.11、B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】解:将这组数据排序得:﹣2,2,2,4,6,7,处在第3、4位两个数的平均数为(4+2)÷2=3,故选:B.【点睛】考查中位数的意义和求法,找一组数据的中位数需要将这组数据从小到大排列后,处在中间位置的一个数或两个数的平均数即为中位数.12、C【分析】根据根与系数的关系即可求出答案.【详解】由根与系数的关系可知:x1x2=−3,∴x2=−1,故选:C.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.二、填空题(每题4分,共24分)13、【分析】连续利用2次平方差公式分解即可.【详解】解:.【点睛】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的基础,注意检查分解要彻底.14、3【分析】根据反比例函数系数k的几何意义得到:△MNO的面积为|k|,即可得出答案.【详解】∵反比例函数的解析式为,∴k=6,∵点M在反比例函数图象上,MN⊥y轴于N,∴S△MNO=|k|=3,故答案为:3【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.15、1【解析】根据口袋中有12个红球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:通过大量重复摸球试验后发现,摸到红球的频率是,口袋中有12个红球,设有x个白球,则,解得:,答:袋中大约有白球1个.故答案为:1.【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.16、1【分析】根据一元二次方程的解的定义,将x=a代入方程x2-x-1=0,列出关于a的一元二次方程,通过解方程求得a2-a的值后,将其整体代入所求的代数式并求值即可.【详解】根据题意,得a2-a-1=0,即a2-a=1;∴2a2-2a+5=2(a2-a)+5=2×1+5=1,即2a2-2a+5=1.故答案是:1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.17、1【分析】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.【详解】解:由题意可得,红球的概率为60%.则白球的概率为10%,这个口袋中白球的个数:10×10%=1(个),故答案为1.【点睛】本题考查了概率的问题,掌握概率公式、以频率计算频数是解题的关键.18、【分析】解:如图,连接OA、OB,易得△AOB是等边三角形,从而可得OA=AB=4,再过点O作OM⊥AE于点M,则∠OAM=30°,AM=ME,然后解直角△AOM求得AM的长,进而可得答案.【详解】解:如图,连接OA、OB,则∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=AB=4,过点O作OM⊥AE于点M,则∠OAM=30°,AM=ME,在直角△AOM中,,∴AE=2AM=.故答案为:.【点睛】本题考查了正多边形和圆,作辅助线构造直角三角形、利用解直角三角形的知识求解是解题关键.三、解答题(共78分)19、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【分析】(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x,即AB;(3)根据二次函数的性质及x的取值范围求出即可.【详解】解:(1)根据题意,得S=x(14﹣3x),即所求的函数解析式为:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根据题意,设花圃宽AB为xm,则长为(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,当x=3时,长=14﹣9=15>10不成立,当x=5时,长=14﹣15=9<10成立,∴AB长为5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墙的最大可用长度为10m,0≤14﹣3x≤10,∴,∵对称轴x=4,开口向下,∴当x=m,有最大面积的花圃.【点睛】二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.20、详见解析.【分析】由题意根据DE⊥AC,BF⊥AC可以证明∠DEC=∠BFA=90°,由“HL”可证Rt△ABF≌Rt△CDE可得BF=DE.【详解】解:证明:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.【点睛】本题考查全等三角形的判定以及考查全等三角形对应边相等的性质,本题中求证Rt△ABF≌Rt△CDE是解题的关键.21、4πcm2【分析】由旋转知△A′BC′≌△ABC,两个三角形的面积S△A′BC′=S△ABC,将三角形△A′BC′旋转到三角形△ABC,变成一个扇面,阴影面积=大扇形A′BA面积-小扇形C′OC面积即可.【详解】解:∵∠BCA=90°,∠BAC=30°,AB=4,∴BC=2,∠CBC′=120°,∠A′BA=120°,由旋转知△A′BC′≌△ABC∴S△A′BC′=S△ABC,∴S阴影=S△A′BC′+S扇形ABA′-S扇形CBC′-S△ABC=S扇形ABA′-S扇形CBC′=×(42-22)=4π(cm2).【点睛】本题考查阴影部分面积问题,关键利用顺时针旋转△A′C′B到△ACB,补上△A′C′B内部的阴影面积,使图形变成一个扇面,用扇形面积公式求出大扇形面积与小扇形面积.22、(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n度,则2π×2=解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm,宽为4.5cm,故选:B.【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.23、(1)﹣;﹣1;(﹣1,0);(1)①MD=(﹣m1+4m),DM最大值;②(,﹣)或(,﹣).【分析】(1)直线yx﹣1与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣1),即可求解;(1)①MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m),即可求解;②分∠CDM=90、∠MDC=90°、∠MCD=90°三种情况,分别求解即可.【详解】(1)直线yx﹣1与x轴交于点B,与y轴交于点C,则点B、C的坐标为:(4,0)、(0,﹣1).将点B、C的坐标代入抛物线表达式并解得:b,c=﹣1.故抛物线的表达式为:…①,点A(﹣1,0).故答案为:,﹣1,(﹣1,0);(1)①如图1,过点D作y轴的平行线交BC于点H交x轴于点E.设点D(m,m1m﹣1),点H(m,m﹣1).∵∠MDH+∠MHD=90°,∠OBC+∠BHE=90°,∠MHD=∠EHB,∴∠MDH=∠OBC=α.∵OC=1,OB=4,∴BC=,∴cos∠OBC=,则cos;MD=DHcos∠MDH(m﹣1m1m+1)(﹣m1+4m).∵0,故DM有最大值;②设点M、D的坐标分别为:(s,s﹣1),(m,n),nm1m﹣1;分三种情况讨论:(Ⅰ)当∠CDM=90°时,如图1,过点M作x轴的平行线交过点D与x轴的垂线于点F,交y轴于点E.易证△MEC≌△DFM,∴ME=FD,MF=CE,即s﹣1﹣1=m﹣s,ss﹣1﹣n,解得:s,或s=8(舍去).故点M(,);(Ⅱ)当∠MDC=90°时,如图3,过D作直线DE⊥y轴于E,MF⊥DE于F.同理可得:s,或s=0(舍去).故点M(,);(Ⅲ)当∠MCD=90°时,则直线CD的表达式为:y=﹣1x﹣1…②,解方程组:得:(舍去)或,故点D(﹣1,0),不在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论