2022年-度河北省正定县数学九年级第一学期期末质量检测模拟试题含解析_第1页
2022年-度河北省正定县数学九年级第一学期期末质量检测模拟试题含解析_第2页
2022年-度河北省正定县数学九年级第一学期期末质量检测模拟试题含解析_第3页
2022年-度河北省正定县数学九年级第一学期期末质量检测模拟试题含解析_第4页
2022年-度河北省正定县数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.有5个完全相同的卡片,正面分别写有1,2,3,4,5这5个数字,现把卡片背面朝上,从中随机抽取一个卡片,其数字是奇数的概率为()A. B. C. D.2.如图,菱形中,过顶点作交对角线于点,已知,则的大小为()A. B. C. D.3.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当0>x1>x2时,有y1>y2,则k的取值范围是()A.k≤ B.k< C.k≥ D.k>4.某楼盘准备以每平方米16000元的均价对外销售,由于受有关房地产的新政策影响,购房者持币观望.开发商为促进销售,对价格进行了连续两次下调,结果以每平方米14440元的均价开盘销售,则平均每次下调的百分率为()A.5% B.8% C.10% D.11%5.一元二次方程的根为()A. B. C. D.6.如图,在平面直角坐标系中,⊙P的圆心坐标是(-3,a)(a>3),半径为3,函数y=-x的图像被⊙P截得的弦AB的长为,则a的值是()A.4 B. C. D.7.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40° B.50° C.80° D.100°8.已知点、、在函数上,则、、的大小关系是().(用“>”连结起来)A. B. C. D.9.若关于的一元二次方程的一个根是1,则的值为()A.-2 B.1 C.2 D.010.一次函数y=(k﹣1)x+3的图象经过点(﹣2,1),则k的值是()A.﹣1 B.2 C.1 D.011.下列几何体的左视图为长方形的是()A. B. C. D.12.的相反数是()A. B.2 C. D.二、填空题(每题4分,共24分)13.二次函数,当时,的最大值和最小值的和是_______.14.平面直角坐标系xOy中,若点P在曲线y=上,连接OP,则OP的最小值为_____.15.抛物线与y轴的交点做标为__________.16.如图,点、分别在的边、上,若,,.若,,则的长是__________.17.Q是半径为3的⊙O上一点,点P与圆心O的距离OP=5,则PQ长的最小值是_____.18.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为_____.三、解答题(共78分)19.(8分)如图,抛物线y=ax2+bx+2交x轴于点A(-1,0),B(n,0)(点A在点B的左边),交y轴于点C.(1)当n=2时求△ABC的面积.(2)若抛物线的对称轴为直线x=m,当1<n<4时,求m的取值范围.20.(8分)如图,在中,点是弧的中点,于,于,求证:.21.(8分)如图,ABCD是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG的形状,其中点E在AB边上,点G在AD的延长线上,DG

=2BE.设BE的长为x米,改造后苗圃AEFG的面积为y平方米.(1)求y与x之间的函数关系式(不需写自变量的取值范围);(2)根据改造方案,改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,请问此时BE的长为多少米?22.(10分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?23.(10分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,1),B(﹣1,4),C(﹣3,2),以原点O为位似中心,△ABC与△A1B1C1位似比为1:2,在y轴的左侧,请画出△ABC放大后的图形△A1B1C1.24.(10分)解答下列问题:(1)计算:;(2)解方程:;25.(12分)速滑运动受到许多年轻人的喜爱。如图,四边形是某速滑场馆建造的滑台,已知,滑台的高为米,且坡面的坡度为.后来为了提高安全性,决定降低坡度,改造后的新坡面AC的坡度为.(1)求新坡面的坡角及的长;(2)原坡面底部的正前方米处是护墙,为保证安全,体育管理部门规定,坡面底部至少距护墙米。请问新的设计方案能否通过,试说明理由(参考数据:)26.如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、D【分析】让正面的数字是奇数的情况数除以总情况数即为所求的概率.【详解】解:∵从写有数字1,2,3,4,5这5张卡片中抽取一张,其中正面数字是奇数的有1、3、5这3种结果,∴正面的数字是奇数的概率为;故选D.【点睛】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.2、D【分析】先说明ABD=∠ADC=∠CBD,然后再利用三角形内角和180°求出即可∠CBD度数,最后再用直角三角形的内角和定理解答即可.【详解】解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵∴∠CBD=∠BDC=∠ABD=∠ADB=(180°-134°)=23°∴=90°-23°=67°故答案为D.【点睛】本题主要考查了菱形的性质,解题的关键是掌握菱形的对角线平分每一组对角和三角形内角和定理.3、D【解析】根据题意可以得到1-3k<0,从而可以求得k的取值范围,本题得以解决.【详解】∵反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当0>x1>x2时,有y1>y2,∴1-3k<0,解得,k>,故选D.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.4、A【分析】设平均每次下调的百分率为x,根据该楼盘的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,即可得出结果.【详解】设平均每次下调的百分率为x,依题意,得:16000(1﹣x)2=14440,解得:x1=0.05=5%,x2=1.95(不合题意,舍去),答:平均每次下调的百分率为5%.故选:A.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出关于x的方程,是解题的关键.5、A【解析】提公因式,用因式分解法解方程即可.【详解】一元二次方程,提公因式得:,∴或,解得:.故选:A.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键.6、B【分析】如图所示过点P作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,可得OC=3,PC=a,把x=-3代入y=-x得y=3,可确定D点坐标,可得△OCD为等腰直角三角形,得到△PED也为等腰直角三角形,又PE⊥AB,由垂径定理可得AE=BE=AB=2,在Rt△PBE中,由勾股定理可得PE=,可得PD=PE=,最终求出a的值.【详解】作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(-3,a),∴OC=3,PC=a,把x=-3代入y=-x得y=3,∴D点坐标为(-3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.【点睛】本题主要考查了垂径定理、一次函数图象上点的坐标特征以及勾股定理,熟练掌握圆中基本定理和基础图形是解题的关键.7、D【分析】由题意直接根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选:D.【点睛】本题考查圆周角定理的运用,熟练掌握圆周角定理是解题的关键.8、D【分析】抛物线开口向上,对称轴为x=-1.根据三点横坐标离对称轴的距离远近来判断纵坐标的大小.【详解】解:由函数可知:该函数的抛物线开口向上,且对称轴为x=-1.∵、、在函数上的三个点,且三点的横坐标距离对称轴的远近为:、、∴.故选:D.【点睛】主要考查二次函数图象上点的坐标特征.也可求得的对称点,使三点在对称轴的同一侧.9、C【分析】根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.【详解】解:根据题意得:1-3+a=0

解得:a=1.

故选C.【点睛】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.10、B【分析】函数经过点(﹣1,1),把点的坐标代入解析式,即可求得k的值.【详解】解:根据题意得:﹣1(k﹣1)+3=1,解得:k=1.故选B.【点睛】本题主要考查了函数的解析式与图象的关系,满足解析式的点一定在图象上,图象上的点一定满足函数解析式.11、C【解析】分析:找到每个几何体从左边看所得到的图形即可得出结论.详解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选C.点睛:此题主要考查了简单几何体的三视图,关键是掌握每个几何体从左边看所得到的图形.12、B【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【详解】抛物线的对称轴是x=1,则当x=1时,y=1−2−3=−1,是最小值;当x=3时,y=9−6−3=0是最大值.的最大值和最小值的和是-1故答案为:-1.【点睛】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.14、1【分析】设点P(a,b),根据反比例函数图象上点的坐标特征可得=18,根据=,且≥2ab,可求OP的最小值.【详解】解:设点P(a,b)∵点P在曲线y=上,∴=18∵≥0,∴≥2ab,∵=,且≥2ab,∴≥2ab=31,∴OP最小值为1.【点睛】本题考查了反比例函数图象上点的坐标特征,灵活运用≥2ab是本题的关键.15、(0,9)【分析】令x=0,求出y的值,然后写出交点坐标即可.【详解】解:x=0时,y=-9,

所以,抛物线与y轴的交点坐标为(0,-9).

故正确答案为:(0,-9).【点睛】本题考查二次函数图象上点的坐标特征,解题关键是熟练掌握二次函数图象与坐标轴的交点的求解方法.16、【分析】由题意根据三角形内角和定理以及相似三角形的判定定理和相似三角形的性质即可求出答案.【详解】解:∵∠A=40°,∠B=65°,∴∠C=180°-40°-65°=75°,∴∠C=∠AED,∵∠A=∠A(公共角),∴△ADE∽△ABC,∴,∴.故答案为:.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,属于基础题型,难度较小.17、1【分析】根据点与圆的位置关系即可得到结论.【详解】解:∵Q是半径为3的⊙O上一点,点P与圆心O的距离OP=5,根据三角形的三边关系,PQ≥OP-OQ(注:当O、P、Q共线时,取等号)∴PQ长的最小值=5-3=1,故答案为:1.【点睛】此题考查的是点与圆的位置关系,掌握三角形的三边关系求最值是解决此题的关键.18、【分析】根据正六边的性质,正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,然后求出等边三角形的高即可.【详解】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=×2=.故答案为:.【点睛】此题考查的是正六边形的性质和正三角形的性质,掌握正六边形的性质和正三角形的性质是解决此题的关键.三、解答题(共78分)19、(1)3;(2)0<m<.【分析】(1)根据n的值,得到AB的长度,然后求得点C的坐标,进而得到△ABC的面积;(2)根据题意,可以得到,然后用含m的代数式表示n,再根据n的取值范围即可得到m的取值范围.【详解】解:(1)如图,连接AC、BC,∵,令x=0,y=2,∴点C的坐标为:(0,2),∵A(-1,0),B(2,0),∴AB=3,OC=2,∴△ABC的面积是:;(2)∵抛物线y=ax2+bx+2交x轴于点A(﹣1,0),B(n,0),对称轴为直线x=m,∵1<n<4,∴,得n=2m+1,∴1<2m+1<4,解得:0<m<.【点睛】本题考查了二次函数与坐标轴的交点问题,二次函数的性质,三角形的面积公式,解题的关键是熟练掌握二次函数的性质进行解题.20、证明见解析.【分析】连接,根据在同圆中,等弧所对的圆心角相等即可证出,然后根据角平分线的性质即可证出结论.【详解】证明:连接,∵点是弧的中点,∴,∴OC平分∠AOB∵,,∴【点睛】此题考查的是圆的基本性质和角平分线的性质,掌握在同圆中,等弧所对的圆心角相等和角平分线的性质是解决此题的关键.21、(1)y=-2x+4x+16;(2)2米【分析】(1)若BE的长为x米,则改造后矩形的宽为米,长为米,求矩形面积即可得出y与x之间的函数关系式;(2)根据题意可令函数值为16,解一元二次方程即可.【详解】解:(1)∵BE边长为x米,∴AE=AB-BE=4-x,AG=AD+DG=4+2x苗圃的面积=AE×AG=(4-x)(4+2x)则苗圃的面积y(单位:米2)与x(单位:米)的函数关系式为:y=-2x+4x+16(2)依题意,令y=16即-2x+4x+16=16解得:x=0(舍)x=2答:此时BE的长为2米.【点睛】本题考查的知识点是列函数关系式以及二次函数的实际应用,难度不大,找准题目中的等量关系式是解此题的关键.22、(4)60;(4)作图见试题解析;(4)4.【解析】试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.试题解析:(4)被调查的学生人数为:44÷40%=60(人);(4)喜欢艺体类的学生数为:60-44-44-46=8(人),如图所示:全校最喜爱文学类图书的学生约有:4400×=4(人).考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.23、见解析.【分析】根据位似图形的画图要求作出位似图形即可.【详解】解:如图所示,△A1B1C1即为所求.【点睛】本题主要考察位似图形的作图,掌握位似图形的画法是解题的关键.24、(1);(2),【分析】(1)先按照二次根式的乘除法计算,然后去条绝对值,再计算加减法;(2)采用配方法解方程即可.【详解】解:(1)原式;(2)∴,【点睛】本题考查了二次根式的混合运算与解一元二次方程,熟练掌握二次根式的乘除运算法则和配方法是解题的关键.25、(1)新坡面的坡角为,米;(2)新的设计方案不能通过,理由详见解析.【分析】(1)过点C作CH⊥BG,根据坡度的概念、正确的定义求出新坡面AC的坡角;(2)根据坡度的定义分别求出AH、BH,求出EA,根据题意进行比较,得到答案.【详解】解:如图,过点作垂足为(1)新坡面的坡度为,即新坡面的坡角为米;(2)新的设计方案不能通过.理由如下:坡面的坡度为,,新的设计方案不能通过.【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.26、(1)点D坐标为(5,);(2)OB=2;(2)k=12.【解析】分析:(1)如图1中,作DE⊥x轴于E,解直角三角形清楚DE,CE即可解决问题;(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(2+a,),点A、D在同一反比例函数图象上,可得2a=(2+a),求出a的值即可;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论