2022年山东省潍坊市昌邑市数学九上期末综合测试模拟试题含解析_第1页
2022年山东省潍坊市昌邑市数学九上期末综合测试模拟试题含解析_第2页
2022年山东省潍坊市昌邑市数学九上期末综合测试模拟试题含解析_第3页
2022年山东省潍坊市昌邑市数学九上期末综合测试模拟试题含解析_第4页
2022年山东省潍坊市昌邑市数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子.在点钉在一起.并使它们保持垂直,在测直径时,把点靠在圆周上.读得刻度个单位,个单位,则圆的直径为()A.12个单位 B.10个单位 C.11个单位 D.13个单位2.如图,网格中的两个三角形是位似图形,它们的位似中心是()A.点A B.点B C.点C D.点D3.如图,在一块斜边长60cm的直角三角形木板()上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若CD:CB=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.202.5cm2 B.320cm2 C.400cm2 D.405cm24.方程x2+2x-5=0经过配方后,其结果正确的是A. B.C. D.5.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25° B.5tan65° C.5cos25° D.5tan25°6.对于二次函数,下列描述错误的是().A.其图像的对称轴是直线=1 B.其图像的顶点坐标是(1,-9)C.当=1时,有最小值-8 D.当>1时,随的增大而增大7.△ABC中,∠C=90°,内切圆与AB相切于点D,AD=2,BD=3,则△ABC的面积为()A.3 B.6 C.12 D.无法确定8.如图,该几何体的主视图是()A. B. C. D.9.如图,将绕点逆时针旋转得到,则下列说法中,不正确的是()A. B. C. D.10.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是()A.20° B.25° C.30° D.35°11.如图,是的弦,半径于点且则的长为().A. B. C. D.12.从拼音“nanhai”中随机抽取一个字母,抽中a的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.已知二次函数的图象如图所示,有下列结论:,,;,,其中正确的结论序号是______14.在中,,如图①,点从的顶点出发,沿的路线以每秒1个单位长度的速度匀速运动到点,在运动过程中,线段的长度随时间变化的关系图象如图②所示,则的长为__________.15.把二次函数变形为的形式,则__________.16.如图,正方形ABEF与正方形BCDE有一边重合,那么正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,则图中点O的位置为_____.17.从实数中,任取两个数,正好都是无理数的概率为________.18.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式,则火箭升空的最大高度是___m三、解答题(共78分)19.(8分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.20.(8分)学校打算用长米的篱笆围城一个长方形的生物园饲养小兔,生物园的一面靠在长为米的墙上(如图).(1)若生物园的面积为平方米,求生物园的长和宽;(2)能否围城面积为平方米的生物园?若能,求出长和宽;若不能,请说明理由.21.(8分)如图,直线与双曲线在第一象限内交于、两点,已知,.(1)__________,____________________,____________________.(2)直接写出不等式的解集;(3)设点是线段上的一个动点,过点作轴于点,是轴上一点,求的面积的最大值.22.(10分)如图,已知一次函数分别交、轴于、两点,抛物线经过、两点,与轴的另一交点为.(1)求、的值及点的坐标;(2)动点从点出发,以每秒1个单位长度的速度向点运动,过作轴的垂线交抛物线于点,交线段于点.设运动时间为秒.①当为何值时,线段长度最大,最大值是多少?(如图1)②过点作,垂足为,连结,若与相似,求的值(如图2)23.(10分)如图,二次函数y=ax2+bx﹣3的图象与x轴交于A、B与y轴交于点C,顶点坐标为(1,﹣4)(1)求二次函数解析式;(2)该二次函数图象上是否存在点M,使S△MAB=S△CAB,若存在,求出点M的坐标.24.(10分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-2,3),B(-4,1),C(-1,2).(1)画出以点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C'(2)求点C在旋转过程中所经过的路径的长.25.(12分)用适当的方法解下列一元二次方程:(1)2x2+4x-1=0;(2)(y+2)2-(3y-1)2=0.26.如图,直线y=1x+1与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=1.(1)求H点的坐标及k的值;(1)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;(3)点N(a,1)是反比例函数y=(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆中的有关性质“90°的圆周角所对的弦是直径”.判断EF即为直径,然后根据勾股定理计算即可.【详解】解:连接EF,

∵OE⊥OF,

∴EF是圆的直径,.故选:B.【点睛】本题考查圆周角的性质定理,勾股定理.掌握“90°的圆周角所对的弦是直径”定理的应用是解决此题的关键.2、D【分析】利用对应点的连线都经过同一点进行判断.【详解】如图,位似中心为点D.故选D.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.3、C【分析】先根据正方形的性质、相似三角形的判定与性质可得,设,从而可得,再在中,利用勾股定理可求出x的值,然后根据三角形的面积公式、正方形的面积公式计算即可.【详解】∵四边形CDEF为正方形,∴,,∴,,∵,,设,则,∴,在中,,即,解得或(不符题意,舍去),,则剩余部分的面积为,故选:C.【点睛】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理等知识点,利用正方形的性质找出两个相似三角形是解题关键.4、C【详解】解:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知,即,配方为.故选:C.【点睛】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.5、C【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【详解】在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形及其应用是解题的关键.6、C【分析】将解析式写成顶点式的形式,再依次进行判断即可得到答案.【详解】=,∴图象的对称轴是直线x=1,故A正确;顶点坐标是(1,-9),故B正确;当x=1时,y有最小值-9,故C错误;∵开口向上,∴当>1时,随的增大而增大,故D正确,故选:C.【点睛】此题考查函数的性质,熟记每种函数解析式的性质是解题的关键.7、B【分析】易证得四边形OECF是正方形,然后由切线长定理可得AC=2+r,BC=3+r,AB=5,根据勾股定理列方程即可求得答案.【详解】如图,设⊙O分别与边BC、CA相切于点E、F,连接OE,OF,

∵⊙O分别与边AB、BC、CA相切于点D、E、F,

∴DE⊥BC,DF⊥AC,AF=AD=2,BE=BD=3,

∴∠OEC=∠OFC=90°,

∵∠C=90°,

∴四边形OECF是矩形,

∵OE=OF,

∴四边形OECF是正方形,

设EC=FC=r,

∴AC=AF+FC=2+r,BC=BE+EC=3+r,AB=AD+BD=2+3=5,

在Rt△ABC中,=+,

∴=+,

∴,

解得:或(舍去).

∴⊙O的半径r为1,∴.故选:B【点睛】本题考查了三角形的内切圆的性质、正方形的判定与性质、切线长定理以及勾股定理.注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.8、D【解析】试题分析:根据主视图是从正面看到的图形,因此可知从正面看到一个长方形,但是还得包含看不到的一天线(虚线表示),因此第四个答案正确.故选D考点:三视图9、A【分析】由旋转的性质可得△ABC≌△AB'C',∠BAB'=∠CAC'=60°,AB=AB',即可分析求解.【详解】∵将△ABC绕点A逆时针旋转60°得到△AB′C′,∴△ABC≌△AB'C',∠BAB'=∠CAC'=60°,∴AB=AB',∠CAB'<∠BAB'=60°,故选:A.【点睛】本题考查了旋转的性质,全等三角形的性质,熟练运用旋转的性质是关键.10、B【解析】由旋转的性质和正方形的性质可得∠FOC=40°,AO=OD=OC=OF,∠AOC=90°,再根据等腰三角形的性质可求∠OFA的度数.【详解】∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴∠FOC=40°,AO=OD=OC=OF,∠AOC=90°∴∠AOF=130°,且AO=OF,∴∠OFA=25°故选B.【点睛】本题考查了旋转的性质,正方形的性质,等腰三角形的性质,熟练运用旋转的性质解决问题是本题的关键.11、D【解析】连接OA,∵OC⊥AB,AB=6则AD=3且OA2=OD2+AD2,∴OA2=16+9,∴OA=OC=5cm.∴DC=OC-OD=1cm故选D.12、B【解析】nanhai共有6个拼音字母,a有2个,根据概率公式可得答案.【详解】∵nanhai共有6个拼音字母,a有2个,∴抽中a的概率为,故选:B.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(每题4分,共24分)13、【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】由图象可知:抛物线开口方向向下,则,对称轴直线位于y轴右侧,则a、b异号,即,抛物线与y轴交于正半轴,则,,故正确;对称轴为,,故正确;由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,所以当时,,即,故正确;抛物线与x轴有两个不同的交点,则,所以,故错误;当时,,故正确.故答案为.【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.14、【分析】由图象,推得AD=7,DC+BC=6,经过解直角三角形求得BC、DC及BD.再由勾股定理求AB.【详解】过点B作BD⊥AC于点D由图象可知,BM最小时,点M到达D点.则AD=7点M从点D到B路程为13-7=6在△DBC中,∠C=60°∴CD=2,BC=4则BD=2∴AB=故答案为:【点睛】本题是动点问题的函数图象探究题,考查了解直角三角形的相关知识,数形结合时解题关键.15、【分析】利用配方法将二次函数变成顶点式即可.【详解】,∴h=2,k=-9,即h+k=2-9=-7.故答案为:-7.【点睛】本题考查二次函数顶点式的性质,关键在于将一般式转换为顶点式.16、点B或点E或线段BE的中点.【分析】由旋转的性质分情况讨论可求解;【详解】解:∵正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,∴若点A与点E是对称点,则点B是旋转中心是点B;若点A与点D是对称点,则点B是旋转中心是BE的中点;若点A与点E是对称点,则点B是旋转中心是点E;故答案为:点B或点E或线段BE的中点.【点睛】本题考查了旋转的性质,正方形的性质,利用分类讨论是本题的关键.17、【分析】画树状图展示所有等可能的结果数,再找出两次选到的数都是无理数的结果数,然后根据概率公式求解.【详解】画树状图为:则共有6种等可能的结果,其中两次选到的数都是无理数有()和()2种,所以两次选到的数都是无理数的概率.故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18、1【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h取得最大值,火箭能达到最大高度为1m.故答案为:1.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.三、解答题(共78分)19、(1)2m﹣1;(2)C2:y=x2﹣4x;(3)0<a或a≥1或a≤﹣.【分析】(1)C1:y=ax2−2ax−3a=a(x−1)2−4a,顶点(1,−4a)围绕点P(m,0)旋转180°的对称点为(2m−1,4a),即可求解;(2)分≤t<1、1≤t≤、t>三种情况,分别求解,(3)分a>0、a<0两种情况,分别求解.【详解】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,t=2m﹣1,故答案为:2m﹣1;(2)a=﹣1时,C1:y=﹣(x﹣1)2+4,①当≤t<1时,x=时,有最小值y2=,x=t时,有最大值y1=﹣(t﹣1)2+4,则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解;②1≤t≤时,x=1时,有最大值y1=4,x=时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=≠1(舍去);③当t>时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=,当C2过点D′时,同理可得:a=1,故:0<a≤或a≥1;当a<0时,当C2过点D′时,﹣3a=1,解得:a=﹣,故:a≤﹣;综上,故:0<a≤或a≥1或a≤﹣.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形的旋转等,其中(2)(3),要注意分类求解,避免遗漏.20、(1)生物园的宽为米,长为米;(2)不能围成面积为平方米的生物园,见解析【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(16-2x)米,根据长方形的面积公式结合生物园的面积为30平方米,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;

(2)设垂直于墙的一边长为y米,则平行于墙的一边长为(16-2y)米,根据长方形的面积公式结合生物园的面积为35平方米,即可得出关于y的一元二次方程,由根的判别式△<0可得出该方程无解,进而可得出不能围成面积为35平方米的生物园.【详解】解:(1)设生物园的宽为米,那么长为米,依题意得:,解得,,当时,,不符合题意,舍去∴,答:生物园的宽为米,长为米.(2)设生物园的宽为米,那么长为米,依题意得:,∵,∴此方程无解,∴不能围成面积为平方米的生物园.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.21、(1),,.(2)或.(3)当时,有最大值,最大值为【分析】(1)先求出反比例函数解析式,进而求出点A坐标,最后用待定系数法,即可得出结论;(2)直接利用函数图象得出结论;(3)先设出点P坐标,进而表示出△PED的面积,即可得出结论.【详解】解:(1)∵点B(2,1)在双曲线上,∴k2=2×1=2,∴双曲线的解析式为y2=,∵A(1,m)在双曲线y2=上,∴m=1×2=2,∴A(1,2),∵直线AB:y1=k1x+b过A(1,2)、B(2,1)两点,∴,∴,∴直线AB的解析式为:y=−x+3;故,,故答案为:-1;2;3;(2)根据函数图象得,不等式y2>y1的解集为0<x<1或x>2;(3)设点,且,则当时,有最大值,最大值为【点睛】此题是反比例函数综合题,主要考查了一次函数和反比例函数的图象和性质,待定系数法,三角形的面积公式,求出直线AB的解析式是解本题的关键.22、(1)2,3,;(2)①时,长度最大,最大值为;②或【解析】(1)先求得坐标,把代入中,利用待定系数法求得系数得出解析式,进一步求解点坐标即可;(2)①由题知、;将函数化为顶点式,即可得到最大值.)②将BF、DF用含有t的代数式表示,分类讨论当相似,则,即:,求得t,当相似,则,即:,求得t即可.【详解】解:(1)在中令,得,令,得,∴,把代入中,得:,解得,∴抛物线的解析式为,∴点坐标为;(2)①由题知、;∴∴当时,长度最大,最大值为.②∵,∴,∴,在中,,;在中,,;∴若相似,则,即:,解得:(舍去),;若相似,则,即:,解得:(舍去),;综上,或时,与相似.【点睛】本题考查了二次函数的综合运用以及相似三角形性质.求出二次函数解析式,研究二次函数的顶点坐标及相关图形的特点,是解题的关键.23、(1)y=x2﹣2x﹣3;(2存在,点M的坐标为(1+,3),(1﹣,3)或(2,﹣3)【分析】(1)二次函数y=ax2+bx﹣3的顶点坐标为(1,﹣4),可以求得a、b的值,从而可以得到该函数的解析式;(2)根据(1)中求得的函数解析式可以得到点C的坐标,再根据S△MAB=S△CAB,即可得到点M的纵坐标的绝对值等于点C的纵坐标的绝对值,从而可以求得点M的坐标.【详解】解:(1)∵二次函数y=ax2+bx﹣3的顶点坐标为(1,﹣4),∴,得,∴该函数的解析式为y=x2﹣2x﹣3;(2)该二次函数图象上存在点M,使S△MAB=S△CAB,∵y=x2﹣2x﹣3=(x﹣3)(x+1),∴当x=0时,y=﹣3,当y=0时,x=3或x=﹣1,∵二次函数y=ax2+bx﹣3的图象与x轴交于A、B与y轴交于点C,∴点A的坐标为(﹣1,0),点B的坐标为(3,0),点C的坐标为(0,﹣3),∵S△MAB=S△CAB,点M在抛物线上,∴点M的纵坐标是3或﹣3,当y=3时,3=x2﹣2x﹣3,得x1=1+,x2=1﹣;当y=﹣3时,﹣3=x2﹣2x﹣3,得x3=0或x4=2;∴点M的坐标为(1+,3),(1﹣,3)或(2,﹣3).故答案为:(1)y=x2﹣2x﹣3;(2)存在,点M的坐标为(1+,3),(1﹣,3)或(2,﹣3).【点睛】本题考查了二次函数与方程,几何知识的综合运用.将函数知识与方程,几何知识有机地结合起来,这类试题难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质,定理和二次函数的知识.24、(1)见解析;(2)【解析】(1)根据网格结构找出点A、B、C绕点O顺时针旋转90∘后的对应点的位置,然后顺次连接即可.(2)在旋转过程中,C所经过的路程为下图中扇形的弧长,即利用扇形弧长公式计算即可.【详解】(1)如图,连接OA、OB、OC并点O为旋转中心,顺时针旋转90°得到A'、B'、C',连接A'B'、B'C'、A'C',△A'B'C'就是所求的三角形.(2)C在旋转过程中所经过的路程为扇形的弧长;所以【点睛】本题考查了旋转作图以及扇形的弧长公式的计算,作出正确的图形是解本题的关键.25、(1)x1=-1+,x2=-1-;(2)y1=-,y2=.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论