




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某地区在一次空气质量检测中,收集到5天的空气质量指数如下:81,70,56,61,81,这组数据的中位数和众数分别是()A.70,81 B.81,81 C.70,70 D.61,812.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°3.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120° B.130° C.140° D.150°4.方程的两根之和是()A. B. C. D.5.已知点P在半径为5cm的圆内,则点P到圆心的距离可以是A.4cm B.5cm C.6cm D.7cm6.下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.明天晚上会看到太阳C.五个人分成四组,这四组中有一组必有2人D.三天内一定会下雨7.下列四个数中是负数的是()A.1 B.﹣(﹣1) C.﹣1 D.|﹣1|8.把图1的正方体切下一个角,按图2放置,则切下的几何体的主视图是()A. B. C. D.9.抛物线可由抛物线如何平移得到的()A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位10.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A.15π B.20π C.24π D.30π11.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若,则=()A. B. C. D.112.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是()A. B.C. D.二、填空题(每题4分,共24分)13.在中,,,,则内切圆的半径是__________.14.如图,在平面直角坐标系中,点,点,作第一个正方形且点在上,点在上,点在上;作第二个正方形且点在上,点在上,点在上…,如此下去,其中纵坐标为______,点的纵坐标为______.15.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On均与直线l相切,设半圆O1,半圆O2,…,半圆On的半径分别是r1,r2,…,rn,则当直线l与x轴所成锐角为30时,且r1=1时,r2017=_______.16.反比例函数的图象在一、三象限,函数图象上有两点A(,y1,)、B(5,y2),则y1与y2,的大小关系是__________17.如图,以矩形ABCD的顶点A为圆心,线段AD长为半径画弧,交AB边于F点;再以顶点C为圆心,线段CD长为半径画弧,交AB边于点E,若AD=,CD=2,则DE、DF和EF围成的阴影部分面积是_____.18.方程x2+2x﹣1=0配方得到(x+m)2=2,则m=_____.三、解答题(共78分)19.(8分)如图,在四边形ABCD中,AD∥BC,AD=2,AB=,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F.(1)求∠ABE的大小及的长度;(2)在BE的延长线上取一点G,使得上的一个动点P到点G的最短距离为,求BG的长.20.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF,BE.(1)求证:直线CF为⊙O的切线;(2)若DE=6,求⊙O的半径长.21.(8分)如图,A,B,C三点的坐标分别为A(1,0),B(4,3),C(5,0),试在原图上画出以点A为位似中心,把△ABC各边长缩小为原来的一半的图形,并写出各顶点的坐标.22.(10分)如图,在△ABC和△ADE中,,点B、D、E在一条直线上,求证:△ABD∽△ACE.23.(10分)如图,在中,∠A=90°,AB=12cm,AC=6cm,点P沿AB边从点A开始向点B以每秒2cm的速度移动,点Q沿CA边从点C开始向点A以每秒1cm的速度移动,P、Q同时出发,用t表示移动的时间.(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?24.(10分)如图,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图像写出使反比例函数的值大于一次函数的值的取值范围.25.(12分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米?26.如图,某农场准备围建一个中间隔有一道篱笆的矩形花圃,现有长为米的篱笆,一边靠墙,若墙长米,设花圃的一边为米;面积为平方米.(1)求与的函数关系式及值的取值范围;(2)若边不小于米,这个花圃的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据中位数的定义和众数的定义即可得出结论.【详解】解:将这5天的空气质量指数从小到大排列后为:56,61,70,81,81,故这组数据的中位数为:70根据众数的定义,出现次数最多的数据为81,故众数为81.故选:A.【点睛】此题考查的是求一组数据的中位数和众数,掌握中位数的定义和众数的定义是解决此题的关键.2、D【解析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3、C【解析】试题分析:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.考点:垂线的定义;平行线的性质;三角形的外角性质4、C【分析】利用两个根和的关系式解答即可.【详解】两个根的和=,故选:C.【点睛】此题考查一元二次方程根与系数的关系式,.5、A【分析】直接根据点与圆的位置关系进行判断.【详解】点P在半径为5cm的圆内,点P到圆心的距离小于5cm,所以只有选项A符合,选项B、C、D都不符合;故选A.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.6、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、任意购买一张电影票,座位号是奇数是随机事件;B、明天晚上会看到太阳是不可能事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、三天内一定会下雨是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、C【解析】大于0的是正数,小于0的是负数,据此进行求解即可.【详解】∵1>0,﹣(﹣1)=1>0,|﹣1|=1>0,∴A,B,D都是正数,∵﹣1<0,∴﹣1是负数.故选:C.【点睛】本题主要考查正数的概念,掌握正数大于0,是解题的关键.8、B【分析】根据主视图的定义,画出图2的主视图进行判断即可.【详解】根据主视图的定义,切下的几何体的主视图是含底边高的等边三角形(高为虚线),作出切下的几何体的主视图如下故答案为:B.【点睛】本题考查了立体几何的主视图问题,掌握主视图的定义和作法是解题的关键.9、A【分析】先将抛物线化为顶点式,然后按照“左加右减,上加下减”的规律进行求解即可.【详解】因为,所以将抛物线先向左平移3个单位,再向下平移2个单位即可得到抛物线,故选A.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律,熟练掌握“左加右减,上加下减”的规律是解题的关键.10、A【解析】试题分析:∵圆锥的主视图是腰长为5,底边长为6的等腰三角形,∴这个圆锥的底面圆的半径为3,母线长为5.∴这个圆锥的侧面积=.故选A.考点:1.简单几何体的三视图;2.圆锥的计算.11、A【分析】由题意直接根据平行线分线段成比例定理进行分析即可求解.【详解】解:∵a//b//c,∴=.故选:A.【点睛】本题考查平行线分线段成比例定理.注意掌握三条平行线截两条直线,所得的对应线段成比例.12、C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系二、填空题(每题4分,共24分)13、1【分析】先根据勾股定理求出斜边AB的长,然后根据直角三角形内切圆的半径公式:(其中a、b为直角三角形的直角边、c为直角三角形的斜边)计算即可.【详解】解:在中,,,,根据勾股定理可得:∴内切圆的半径是故答案为:1.【点睛】此题考查的是求直角三角形内切圆的半径,掌握直角三角形内切圆的半径公式:(其中a、b为直角三角形的直角边、c为直角三角形的斜边)是解决此题的关键.14、【分析】先确定直线AB的解析式,然后再利用正方形的性质得出点C1和C2的纵坐标,归纳规律,然后按规律求解即可.【详解】解:设直线AB的解析式y=kx+b则有:,解得:所以直线仍的解析式是:设C1的横坐标为x,则纵坐标为∵正方形OA1C1B1∴x=y,即,解得∴点C1的纵坐标为同理可得:点C2的纵坐标为=∴点Cn的纵坐标为.故答案为:,.【点睛】本题属于一次函数综合题,主要考查了运用待定系数法求一次函数的解析式、正方形的性质、一次函数图象上点的坐标特点等知识,掌握数形结合思想是解答本题的关键.15、【详解】分别作O1A⊥l,O2B⊥l,O3C⊥l,如图,∵半圆O1,半圆O2,…,半圆On与直线l相切,∴O1A=r1,O2B=r2,O3C=r3,∵∠AOO1=30°,∴OO1=2O1A=2r1=2,在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,∴r2=3,在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,∴r3=9=32,同理可得r4=27=33,所以r2017=1.故答案为1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了从特殊到一般的方法解决规律型问题.16、【分析】根据反比例函数的性质,双曲线的两支分别位于第一、第三象限时k>0,在每一象限内y随x的增大而减小,可得答案.【详解】解:∵反比例函数的图象在一、三象限,∴,∴在每一象限内y随x的增大而减小,∵,∴;故答案为:.【点睛】此题主要考查了反比例函数的性质,关键是掌握反比例函数(k≠0),当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.17、2π+2﹣4【分析】如图,连接EC.首先证明△BEC是等腰直角三角形,根据S阴=S矩形ABCD-(S矩形ABCD-S扇形ADF)-(S矩形ABCD-S扇形CDE-S△EBC)=S扇形ADF+S扇形CDE+S△EBC-S矩形ABCD计算即可.【详解】如图,连接EC.∵四边形ABCD是矩形,∴AD=BC=2,CD=AB=EC=2,∠B=∠A=∠DCB=90°,∴BE===2,∴BC=BE=2,∴∠BEC=∠BCE=45°,∴∠ECD=45°,∴S阴=S矩形ABCD﹣(S矩形ABCD﹣S扇形ADF)﹣(S矩形ABCD﹣S扇形CDE﹣S△EBC)=S扇形ADF+S扇形CDE+S△EBC﹣S矩形ABCD=+×2×2﹣2×2,=2π+2﹣4.故答案为:2π+2﹣4.【点睛】本题考查扇形的面积公式,矩形的性质等知识,解题的关键是熟练掌握基本知识,学会用分割法求阴影部分面积.18、1【解析】试题解析:x2+2x-1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2,则m=1;故答案为1.三、解答题(共78分)19、(1)15°,;(2)1.【解析】试题分析:(1)连接AE,如图1,根据圆的切线的性质可得AE⊥BC,解Rt△AEB可求出∠ABE,进而得到∠DAB,然后运用圆弧长公式就可求出的长度;(2)如图2,根据两点之间线段最短可得:当A、P、G三点共线时PG最短,此时AG=AP+PG==AB,根据等腰三角形的性质可得BE=EG,只需运用勾股定理求出BE,就可求出BG的长.试题解析:(1)连接AE,如图1,∵AD为半径的圆与BC相切于点E,∴AE⊥BC,AE=AD=2.在Rt△AEB中,sin∠ABE===,∴∠ABE=15°.∵AD∥BC,∴∠DAB+∠ABE=180°,∴∠DAB=135°,∴的长度为=;(2)如图2,根据两点之间线段最短可得:当A、P、G三点共线时PG最短,此时AG=AP+PG==,∴AG=AB.∵AE⊥BG,∴BE=EG.∵BE===2,∴EG=2,∴BG=1.考点:切线的性质;弧长的计算;动点型;最值问题.20、(1)详见解析;(2)3【分析】(1)连接OD,由BC为⊙O的直径,点E为△ABC的内心,证得OD⊥BC,再根据中位线定理证得OD∥CF,即可证得结论;(2)根据圆周角定理证得∠EBD=∠BED,即BD=DE,根据正弦函数即可求出半径的长【详解】(1)连接OD∵BC为⊙O的直径∴∠BAC=90°∵点E为△ABC的内心∴∠CAD=∠BAD=45°,∠ABE=∠EBC∴∠BOD=∠COD=90°,即OD⊥BC又BD=DF,OB=OC∴OD∥CF∴BC⊥CF,BC为⊙O的直径∴直线CF为⊙O的切线;(2)∵,∴∠CAD=∠CBD,∵OD⊥BC,∴,∴∠CBD=∠BAE,又∵∠ABE=∠EBC,∴∠EBD=∠EBC+∠CBD=∠BAE+∠ABE=∠BED,∴BD=DE=6,Rt△OBD中OB=OD,∴OB=BD=×6=3,【点睛】本题考查三角形的内切圆与内心、切线的判定、等腰三角形的判定、直角三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.21、各顶点坐标分别为A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).【解析】根据题意,分别从AB,AC上截取它的一半找到对应点即可.【详解】如答图所示,△AB′C′,△AB″C″即是所求的三角形(画出一种即可).各顶点坐标分别为A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).【点睛】本题考查了画位似图形.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.22、证明见解析;【分析】根据三边对应成比例的两个三角形相似可判定△ABC∽△ADE,根据相似三角形的性质可得∠BAC=∠DAE,即可得∠BAD=∠CAE,再由可得,根据两边对应成比例且夹角相等的两个三角形相似即可判定△ABD∽△ACE.【详解】∵在△ABC和△ADE中,,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴,∴△ABD∽△ACE.【点睛】本题考查了相似三角形的判定与性质,熟知相似三角形的判定方法是解决本题的关键.23、(1);(2)或.【分析】(1)利用距离=速度×时间可用含t的式子表示AP、CQ、QA的长,根据QA=AP列方程求出t值即可;(2)分△QAP∽△BAC和△QAP∽△CAB两种情况,根据相似三角形的性质列方程分别求出t的值即可.【详解】(1)∵点P的速度是每秒2cm,点Q的速度是每秒1cm,∴,,,∵时,为等腰直角三角形,∴,解得:,∴当时,为等腰直角三角形.(2)根据题意,可分为两种情况,①如图,当∽时,,∴,解得:,②当∽,,∴,解得:,综上所述:当或时,以点Q、A、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园中学小学家长会130
- 初中数学期中提升训练+2024-2025学年北师大版数学七年级下册
- 1《开开心心上学去》公开课一等奖创新教学设计(表格式)-2
- 傣族民间舞动作组合
- 幼儿声势律动《外婆的澎湖湾》
- 酒店管理培训项目合作开发合同
- 2025标准个人之间的借款合同协议
- 2025年住宅装修施工合同示范文本
- 项目技术咨询合同范本汇编
- 2025版合同范例汇编
- 头盔安全教育课件
- 药品研发合作合同范例
- 八大危险作业培训课件
- 曲面的面积重心转动惯量引力
- 3DMAX创建之美知到智慧树章节测试课后答案2024年秋郑州信息工程职业学院
- 2024届九省联考英语试题(含答案解析、MP3及录音稿)
- 医院新技术项目鉴定审批表
- 合同工期延期补充协议书
- 2024年司法考试刑法真题及答案
- 《工程伦理》练习题集
- 港航实务 皮丹丹 教材精讲班课件 52-第2章-2.5.3-铺面面层施工-2.5.4-铺面连接施工-2.5.5-堆场构筑物施工
评论
0/150
提交评论