2023届山东省济宁院附中数学九上期末教学质量检测试题含解析_第1页
2023届山东省济宁院附中数学九上期末教学质量检测试题含解析_第2页
2023届山东省济宁院附中数学九上期末教学质量检测试题含解析_第3页
2023届山东省济宁院附中数学九上期末教学质量检测试题含解析_第4页
2023届山东省济宁院附中数学九上期末教学质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一件商品的原价是100元,经过两次降价后价格为81元,设每次降价的百分比都是x,根据题意,下面列出的方程正确的是()A. B. C. D.2.一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是()A.6个 B.7个 C.8个 D.9个3.若一元二次方程的两根为和,则的值等于()A.1 B. C. D.4.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A. B. C. D.5.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90º.则小意同学判断的依据是()A.等角对等边 B.线段中垂线上的点到线段两段距离相等C.垂线段最短 D.等腰三角形“三线合一”6.上蔡县是古蔡国所在地,有着悠久的历史,拥有很多重点古迹.某中学九年级历史爱好者小组成员小华和小玲两人计划在寒假期间从“蔡国故城、白圭庙、伏羲画卦亭”三个古迹景点随机选择其中一个去参观,两人恰好选择同一古迹景点的概率是()A. B. C. D.7.根据下面表格中的对应值:x3.243.253.26ax2+bx+c﹣0.020.010.03判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.x>3.268.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转得到月牙②,则点A的对应点A’的坐标为()A.(2,2) B.(2,4) C.(4,2) D.(1,2)9.一元二次方程的解是()A.x1=2,x2=-2 B.x=-2 C.x=2 D.x1=2,x2=010.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣211.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.612.已知sinαcosα=,且0°<α<45°,则sinα-cosα的值为()A. B.- C. D.±二、填空题(每题4分,共24分)13.如图,在菱形中,边长为10,.顺次连结菱形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续下去….则四边形的周长是_________.14.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为___.15.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1=.16.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.当y=﹣1时,n=_____.17.如图,点B是反比例函数y=(x>0)的图象上任意一点,AB∥x轴并交反比例函数y=﹣(x<0)的图象于点A,以AB为边作平行四边形ABCD,其中C、D在x轴上,则平行四边形ABCD的面积为_____.18.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+5=_____.三、解答题(共78分)19.(8分)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.20.(8分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?21.(8分)如图,抛物线y=ax2+bx+6与x轴交于点A(6,0),B(﹣1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标.(3)抛物线上是否存在点P,使△BCP为等腰三角形?若存在,有几个?并请在图中画出所有符合条件的点P,(保留作图痕迹);若不存在,说明理由.22.(10分)快乐的寒假临近啦!小明和小丽计划在寒假期间去镇江旅游.他们选取金山(记为)、焦山(记为)、北固山(记为)这三个景点为游玩目标.如果他们各自在三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),请用“画树状图”或“列表”的方法求他俩都选择金山为第一站的概率.23.(10分)计算:24.(10分)某商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,则日销售量将减少20千克,那么每千克水果应涨价多少元时,商场获得的总利润(元)最大,最大是多少元?25.(12分)如图,为美化中心城区环境,政府计划在长为30米,宽为20米的矩形场地上修建公园.其中要留出宽度相等的三条小路,且两条与平行,另一条与平行,其余部分建成花圃.(1)若花圃总面积为448平方米,求小路宽为多少米?(2)已知某园林公司修建小路的造价(元)和修建花圃的造价(元)与修建面积(平方米)之间的函数关系分别为和.若要求小路宽度不少于2米且不超过4米,求小路宽为多少米时修建小路和花圃的总造价最低?26.如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.(1)求抛物线的解析式;(2)连接AE,求h为何值时,△AEF的面积最大.(3)已知一定点M(﹣2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【分析】原价为100,第一次降价后的价格是100×(1-x),第二次降价是在第一次降价后的价格的基础上降价的,第二次降价后的价格为:100×(1-x)×(1-x)=100(1-x)2,则可列出方程.【详解】设平均每次降价的百分比为x,根据题意可得:100(1-x)2=81故选:B.【点睛】本题主要考查了一元二次方程的增长率问题,需注意第二次降价是在第一次降价后的价格的基础上降价的.2、C【解析】观察图形,两个断开的水平菱形之间最小有2个竖的菱形,之后在此基础上每增加一个也可完整,即可以是2、5、8、11……故选C.点睛:探索规律的题型最关键的是找准规律.3、B【分析】先将一元二次方程变为一般式,然后根据根与系数的关系即可得出结论.【详解】解:将变形为根据根与系数的关系:故选B.【点睛】此题考查的是一元二次方程根与系数的关系,掌握两根之积等于是解决此题的关键.4、D【解析】试题分析:列表如下

白1

白2

(黑,黑)

(白1,黑)

(白2,黑)

白1

(黑,白1)

(白1,白1)

(白2,白1)

白2

(黑,白2)

(白1,白2)

(白2,白2)

由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.考点:用列表法求概率.5、B【分析】由垂直平分线的判定定理,即可得到答案.【详解】解:根据题意,∵CD=CE,OE=OD,∴AO是线段DE的垂直平分线,∴∠AOB=90°;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B.【点睛】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断.6、A【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.;【详解】解:(1)设蔡国故城为“A”,白圭庙为“B”,伏羲画卦亭为“C”,画树状图如下:

由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;选择同一古迹景点的结果为AA,BB,CC.∴两人恰好选择同一古迹景点的概率是:.故选A.【点睛】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.7、B【解析】根据表中数据可得出ax2+bx+c=0的值在-0.02和0.01之间,再看对应的x的值即可得.【详解】∵x=3.24时,ax2+bx+c=﹣0.02;x=3.1时,ax2+bx+c=0.01,∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3.24<x<3.1.故选:B.【点睛】本题考查了估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.8、B【详解】解:连接A′B,由月牙①顺时针旋转90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(-2,0)、B(2,0)得AB=4,于是可得A′的坐标为(2,4).故选B.9、A【分析】首先将原方程移项可得,据此进一步利用直接开平方法求解即可.【详解】原方程移项可得:,解得:,,故选:A.【点睛】本题主要考查了直接开平方法解一元二次方程,熟练掌握相关方法是解题关键.10、C【详解】解:把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2(x﹣1)2+2,故选C.11、D【分析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1.【详解】∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,

则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,

∴S1+S1=4+4-1×1=2.

故选D.12、B【分析】由题意把已知条件两边都乘以2,再根据sin2α+cos2α=1,进行配方,然后根据锐角三角函数值求出cosα与sinα的取值范围,从而得到sinα-cosα<0,最后开方即可得解.【详解】解:∵sinαcosα=,∴2sinα•cosα=,∴sin2α+cos2α-2sinα•cosα=1-,即(sinα-cosα)2=,∵0°<α<45°,∴<cosα<1,0<sinα<,∴sinα-cosα<0,∴sinα-cosα=-.故选:B.【点睛】本题考查同角的三角函数的关系,利用好sin2α+cos2α=1,并求出sinα-cosα<0是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.【详解】∵菱形ABCD中,边长为10,∠A=60°,设菱形对角线交于点O,∴,∴,,∴,,顺次连结菱形ABCD各边中点,

∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,

∴A1D1=AA1=AB=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=AB=5,∴四边形A2B2C2D2的周长是:5×4=20,

同理可得出:A3D3=5×,C3D3=C1D1=5,A5D5=5,C5D5=C3D3=5,∴四边形A2019B2019C2019D2019的周长是:故答案为:【点睛】本题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.14、【分析】画出树状图求解即可.【详解】如图,一共有6中不同的选法,选中甲的情况有4种,∴甲被选中的概率为:.故答案为【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.15、.【分析】根据三角形数得到x1=1,x1=3=1+1,x3=6=1+1+3,x4=10=1+1+3+4,x5=15=1+1+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即xn=1+1+3+…+n=、xn+1=,然后计算xn+xn+1可得.【详解】∵x1=1,

x1═3=1+1,

x3=6=1+1+3,

x4═10=1+1+3+4,

x5═15=1+1+3+4+5,

∴xn=1+1+3+…+n=,xn+1=,

则xn+xn+1=+=(n+1)1,

故答案为:(n+1)1.16、-1.【分析】首先根据题意,可得:x2+2x=m,2x+3=n,m+n=y;然后根据y=﹣1,可得:x2+2x+2x+3=﹣1,据此求出x的值是多少,进而求出n的值是多少即可.【详解】根据题意,可得:x2+2x=m,2x+3=n,m+n=y,∵y=﹣1,∴x2+2x+2x+3=﹣1,∴x2+4x+4=0,∴(x+2)2=0,∴x+2=0,解得x=﹣2,∴n=2x+3=2×(﹣2)+3=﹣1.故答案为:﹣1.【点睛】此题考查一元二次方程的解法,根据方程的特点选择适合的解法是解题的关键.17、1.【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得AB的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解【详解】设A的纵坐标是b,则B的纵坐标也是b把y=b代入y=得,b=则x=,即B的横坐标是同理可得:A的横坐标是:则AB=-()=则S=×b=1.故答案为1【点睛】此题考查反比例函数系数k的几何意义,解题关键在于设A的纵坐标为b18、1【分析】利用抛物线与x轴的交点问题得到m2﹣m﹣1=0,则m2﹣m=1,然后利用整体代入的方法计算m2﹣m+5的值.【详解】∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+5=1+5=1.故答案为:1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数(是常数,)与轴的交点坐标问题转化为解关于的一元二次方程.三、解答题(共78分)19、(1)y=﹣2x+1;(2)点P的坐标为(﹣,0)或(,0).【解析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出,解之即可得出结论.【详解】(1)∵双曲线y=(m≠0)经过点A(﹣,2),∴m=﹣1.∴双曲线的表达式为y=﹣.∵点B(n,﹣1)在双曲线y=﹣上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),∴,解得∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=,∴点C(,0).设点P的坐标为(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴点P的坐标为(﹣,0)或(,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出.20、(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)在飞行过程中,小球从飞出到落地所用时间是4s;(3)在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【解析】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.21、(1)y=﹣x2+5x+6;(2)M(,);(3)存在5个满足条件的P点,尺规作图见解析【分析】(1)将A(6,0),B(﹣1,0)代入y=ax2+bx+6即可;(2)作点C关于对称轴x=的对称点C',连接BC'与对称轴交于点M,则CM+BM=C'M+BM=BC最小;求出BC'的直线解析式为y=x+1,即可求M点;(3)根据等腰三角形腰的情况分类讨论,然后分别尺规作图即可.【详解】解:(1)将A(6,0),B(﹣1,0)代入y=ax2+bx+6,可得a=﹣1,b=5,∴y=﹣x2+5x+6;(2)作点C关于对称轴x=的对称点C',连接BC'与对称轴交于点M,根据两点之间线段最短,则CM+BM=C'M+BM=C'B最小,∵C(0,6),∴C'(5,6),设直线BC'的解析式为y=kx+b将B(﹣1,0)和C'(5,6)代入解析式,得解得:∴直线BC'的解析式为y=x+1,将x=代入,解得y=∴M(,);(3)存在5个满足条件的P点;尺规作图如下:①若CB=CP时,以C为原点,BC的长为半径作圆,交抛物线与点P,如图1所示,此时点P有两种情况;②若BC=BP时,以B为原点,BC的长为半径作圆,交抛物线与点P,如图2所示,此时点P即为所求;③若BP=CP,则点P在BC的中垂线上,作BC的中垂线,交抛物线与点P,如图3所示,此时点P有两种情况;故存在5个满足条件的P点.【点睛】此题考查的是求二次函数的解析式、求两线段之和的最小值和尺规作图,掌握用待定系数法求二次函数的解析式、两点之间线段最短和用尺规作图作等腰三角形是解决此题的关键.22、“画树状图”或“列表”见解析;(都选金山为第一站).【分析】画树形图得出所有等可能的情况数,找出小明和小丽都选金山为第一站的情况数,即可求出所求的概率.【详解】画树状图得:

∵共有9种等可能的结果,小明和小丽都选金山为第一站的只有1种情况,

∴(都选金山为第一站).【点睛】本题考查的是用列表法或树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23、1【分析】先计算特殊的三角函数值和去绝对值,再从左至右计算即可.【详解】解:原式=【点睛】本题考查的是实数与特殊角的三角函数值的混合运算,能够熟知特殊角的三角函数值是解题的关键.24、(1)每次下降的百分率为20%;(2)每千克水果应涨价1.5元时,商场获得的利润最大,最大利润是6125元.【分析】(1)设每次下降百分率为,,得方程,求解即可

(2)根据销售利润=销售量×(售价−−进价),列出每天的销售利润W(元))与涨价元之间的函数关系式.即可求解.【详解】解:(1)设每次下降百分率为,根据题意,得,解得(不合题意,舍去)答:每次下降的百分率为20%;(2)设每千克涨价元,由题意得:∵,开口向下,有最大值,∴当(元)时,(元)答:每千克水果应涨价1.5元时,商场获得的利润最大,最大利润是6125元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案25、(1)小路的宽为2米;(2)小路的宽为2米时修建小路和花圃的总造价最低.【分析】(1)设小路的宽为米,根据面积公式列出方程并解方程即可;(2)设小路的宽为米,总造价为元,先分别表示出花圃的面积和小路的面积,然后根据已知函数关系,即可求出总造价为与小路宽的函数关系式,化为顶点式,利用二次函数的增减性求最值即可求出此时的小路的宽.【详解】解:(1)设小路的宽为米,则可列方程解得:或(舍去)答:小路的宽为2米.(2)设小路的宽

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论