河北省石家庄外国语教育集团2022年数学九上期末教学质量检测模拟试题含解析_第1页
河北省石家庄外国语教育集团2022年数学九上期末教学质量检测模拟试题含解析_第2页
河北省石家庄外国语教育集团2022年数学九上期末教学质量检测模拟试题含解析_第3页
河北省石家庄外国语教育集团2022年数学九上期末教学质量检测模拟试题含解析_第4页
河北省石家庄外国语教育集团2022年数学九上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,△ABC与△A′B′C′是位似图形,PB′=BB′,A′B′=2,则AB的长为()A.1 B.2 C.4 D.82.若反比例函数的图象分布在二、四象限,则关于x的方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.只有一个实数根3.反比例函数y=2A.第一、三象限 B.第二、四象限 C.第一、二象限 D.第三、四象限4.下列四对图形中,是相似图形的是()A.任意两个三角形 B.任意两个等腰三角形C.任意两个直角三角形 D.任意两个等边三角形5.如图所示,抛物线y=ax2-x+c(a>0)的对称轴是直线x=1,且图像经过点(3,0),则a+c的值为(

)A.0 B.-1 C.1 D.26.sin45°的值是()A. B. C. D.7.等腰三角形底边长为10㎝,周长为36cm,那么底角的余弦等于().A. B. C. D.8.将二次函数的图象先向右平移2个单位长度,再向上平移3个单位长度,下列关于平移后所得抛物线的说法,正确的是()A.开口向下 B.经过点 C.与轴只有一个交点 D.对称轴是直线9.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知,则球的半径长是()A.2 B.2.5 C.3 D.410.如图,的顶点均在上,若,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,是⊙的直径,,点是的中点,过点的直线与⊙交于、两点.若,则弦的长为__________.12.已知y与x的函数满足下列条件:①它的图象经过(1,1)点;②当时,y随x的增大而减小.写出一个符合条件的函数:__________.13.若<2,化简_____________14.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,若△OAB的面积为,则k的值为_____.15.已知点E是线段AB的黄金分割点,且,若AB=2则BE=__________.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为______.(结果保留)17.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为_______________________18.小亮同学想测量学校旗杆的高度,他在某一时刻测得米长的竹竿竖直放置时影长为米,同时测量旗杆的影长时由于影子不全落在地面上,他测得地面上的影长为米,留在墙上的影高为米,通过计算他得出旗杆的高度是___________米.三、解答题(共66分)19.(10分)如图①,在中,,是边的中点,以点为圆心的圆经过点.(1)求证:与相切;(2)在图①中,若与相交于点,与相交于点,连接,,,如图②,则________.20.(6分)现有三张分别标有数字-1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀.

(1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为;(2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率.21.(6分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.762.463.665.966.468.569.169.369.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.(8分)如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)画出△ABC关于原点O中心对称的图形△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB扫过的面积.23.(8分)如图,在Rt△ABC中,∠C=90°,点D是AC边上一点,DE⊥AB于点E.(1)求证:△ABC∽△ADE;(2)如果AC=8,BC=6,CD=3,求AE的长.24.(8分)如图,在平面直角坐标系中,A,B.(1)作出与△OAB关于轴对称的△;(2)将△OAB绕原点O顺时针旋转90°得到△,在图中作出△;(3)△能否由△通过平移、轴对称或旋转中的某一种图形变换直接得到?如何得到?25.(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC绕点O顺时针旋转90°后的△A′B′C′.(2)求点B绕点O旋转到点B′的路径长(结果保留π).26.(10分)如图,⊙O是△ABC的外接圆,PA是⊙O切线,PC交⊙O于点D.(1)求证:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半径.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据位似图形的对应边互相平行列式计算,得到答案.【详解】∵△ABC与△A′B′C′是位似图形,∴A′B′∥AB,∴△PA′B′∽△PAB,∴==,∴AB=4,故选:C.【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形是解题的关键.2、A【分析】反比例函数的图象分布在二、四象限,则k小于0,再根据根的判别式判断根的情况.【详解】∵反比例函数的图象分布在二、四象限∴k<0则则方程有两个不相等的实数根故答案为:A.【点睛】本题考查了一元二次方程方程根的情况,务必清楚时,方程有两个不相等的实数根;时,方程有两个相等的实数根;时,方程没有实数根.3、A【解析】试题分析:∵k=2>0,∴反比例函数y=2考点:反比例函数的性质.4、D【分析】根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,对题中条件一一分析,排除错误答案.【详解】解:A、任意两个三角形,形状不确定,不一定是相似图形,故A错误;B、任意两个等腰三角形,形状不确定,不一定是相似图形,故B错误;C、任意两个直角三角形,直角边的长度不确定,不一定是相似图形,故C错误;D、任意两个等边三角形,形状相同,但大小不一定相同,符合相似形的定义,故D正确;故选:D.【点睛】本题考查的是相似形的识别,关键要联系实际,根据相似图形的定义得出.5、B【解析】∵抛物线的对称轴是直线,且图像经过点(3,0),∴,解得:,∴.故选B.6、B【解析】将特殊角的三角函数值代入求解.【详解】解:sin45°=.故选:B.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.7、A【分析】过顶点A作底边BC的垂线AD,垂足是D点,构造直角三角形.根据等腰三角形的性质,运用三角函数的定义,则可以求得底角的余弦cosB的值.【详解】解:如图,作AD⊥BC于D点.则CD=5cm,AB=AC=13cm.∴底角的余弦=.故选A.【点睛】本题考查的是解直角三角形,解答本题的关键是熟练掌握等腰三角形的三线合一的性质:等腰三角形顶角平分线、底边上的高,底边上的中线重合.8、C【分析】根据二次函数图象和性质以及二次函数的平移规律,逐一判断选项,即可得到答案.【详解】∵二次函数的图象先向右平移2个单位长度,再向上平移3个单位长度,∴平移后的二次函数解析式为:,∵2>0,∴抛物线开口向上,故A错误,∵,∴抛物线不经过点,故B错误,∵抛物线顶点坐标为:(2,0),且开口向上,∴抛物线与轴只有一个交点,故C正确,∵抛物线的对称轴为:直线x=2,∴D错误.故选C.【点睛】本题主要考查二次函数的图象和性质以及平移规律,掌握“左加右减,上加下减”是解题的关键.9、B【解析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.10、D【分析】根据同弧所对圆心角等于圆周角的两倍,可得到∠BOC=2∠BAC,再结合已知即可得到此题的答案.【详解】∵∠BAC和∠BOC分别是所对的圆周角和圆心角,∴∠BOC=2∠BAC.∵∠BAC=35°,∴∠BOC=70°.故选D.【点睛】本题考查了圆周角定理,熟练掌握定理是解题的关键.二、填空题(每小题3分,共24分)11、【分析】连接OD,作OE⊥CD于E,由垂径定理得出CE=DE,证明△OEM是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△ODE中,由勾股定理求出DE=,得出CD=2DE=即可.【详解】连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为.【点睛】本题考查了垂径定理、勾股定理、等腰直角三角形的判定与性质;熟练掌握垂径定理,由勾股定理求出DE是解决问题的关键.12、y=-x+2(答案不唯一)【解析】①图象经过(1,1)点;②当x>1时.y随x的增大而减小,这个函数解析式为y=-x+2,故答案为y=-x+2(答案不唯一).13、2-x.【分析】直接利用二次根式的性质化简求出答案.【详解】解:∵x<2,∴x-2<0,故答案是:2-x.【点睛】此题主要考查了二次根式的性质与化简,正确把握二次根式的性质是解题关键.14、1【分析】连接OC,根据反比例函数的几何意义,求出△BCO面积即可解决问题.【详解】解:如图,连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO=S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=1,故答案为:1.【点睛】本题考查反比例函数、切线的性质等知识,解题的关键是理解S△BCO=,属于中考常考题型.15、【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比;【详解】解:∵点E是线段AB的黄金分割点,且BE>AE,∴BE=AB,而AB=2,∴BE=;故答案为:;【点睛】本题主要考查了黄金分割,掌握黄金分割是解题的关键.16、【解析】根据菱形的性质得到AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°∴AO=AB=1,由勾股定理得,又∵AC=2,BD=2,∴调影部分的面积为:故答案为:【点睛】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.17、3【分析】根据解析式求出A、B、C三点的坐标,即△ABC的底和高求出,然后根据公式求面积.【详解】根据题意可得:A点的坐标为(1,0),B点的坐标为(3,0),C点的坐标为(0,3),则AB=2,所以三角形的面积=2×3÷2=3.考点:二次函数与x轴、y轴的交点.18、【分析】根据题意画出图形,然后利用某物体的实际高度:影长=被测物体的实际高度:被测物体的影长即可求出旗杆的高度.【详解】根据题意画出如下图形,有,则AC即为所求.设AB=x则解得∴故答案为10.5.【点睛】本题主要考查相似三角形的应用,掌握某物体的实际高度:影长=被测物体的实际高度:被测物体的影长是解题的关键.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)连接OC,利用等腰三角形的三线合一性质证明即可.(2)利用30°的特殊三角形的性质求出即可.【详解】(1)证明:连接.,是边的中点,.又点在上,与相切.图①(2)∵∠AOB=120°,OA=OB,∴∠A=30°,又∵OD=6∴OA=12∴AC=,AB=∵DE是三角形OAB的中位线,∴DE=.图②【点睛】本题考查圆与三角形的结合,关键在于熟悉基础知识.20、(1);(2).【分析】(1)利用概率公式求解即可;(2)利用画树状图得出全部可能的情况,再找出符合题意的情况,即可得出所求概率.【详解】解:(1),∴抽到标有数字3的卡片的概率为;(2)解:用树状图列出所有可能出现结果:共有6种等可能结果,其中2种符合题意.∴(数字之和为负数)=.【点睛】本题考查的知识点是用树状图法求事件的概率,根据题意找出全部可能的情况,再找出符合题意的情况是解此题的关键.21、(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;

(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;

(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;

(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【详解】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,

∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,

故答案为17;

(2)如图所示:

(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;

故答案为2.8;

(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,

①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;

②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;

故答案为①②.【点睛】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.22、(1)见解析;(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出B,C的对应点B2,C2即可,再利用扇形的面积公式计算即可.【详解】解(1)如图,△A1B1C1即为所求.(2)如图,△AB2C2即为所求.线段AB扫过的面积==【点睛】本题考查作图旋转变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)见解析;(2)2【分析】(1)由∠AED=∠C=90°以及∠A=∠A公共角,从而求证△ABC∽△ADE;(2)由△ABC∽△ADE,可知,代入条件求解即可.【详解】(1)证明:∵DE⊥AB于点E,∴∠AED=∠C=90°.∵∠A=∠A,∴△ABC∽△ADE.(2)解:∵AC=8,BC=6,∴AB=1.∵△ABC∽△ADE,∴.∴AE=2.【点睛】本题考查相似三角形的综合问题,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等难度题型.24、(1)见解析;(2)见解析;(3)△可由△沿直线翻折得到【分析】(1)先作出A1和B1点,然后用线段连接A1、B1和O点即可;(2)先作出A2和B2点,然后用线段连接A2、B2和O点即可;(3)根据(1)和(2)中B1和B2点坐标,得到OB为B1B2的垂直平分线,因此可以判断两个图形关于直线对称.【详解】(1)根据题意获得下图;(2)根据题意获得上图;(3)根据题意得,直线OB的解析式为,通过观察图像可以得到B1(-4,4)和B2(4,-4),∴直线B1B2的解析式为,∴直线OB为直线B1B2的垂直平分线,∴两个图形关于直线对称,即△可由△沿直线翻折得到故答案为(1)见解析;(2)见解析;(3)△可由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论