版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是()A. B. C. D.2.把方程化成的形式,则的值分别是()A.4,13 B.-4,19 C.-4,13 D.4,193.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2 B.4 C.6 D.84.如图,在平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2,则下列说法正确的是()A.A1的坐标为(3,1) B.S四边形ABB1A1=3 C.B2C=2 D.∠AC2O=45°5.如下图:⊙O的直径为10,弦AB的长为8,点P是弦AB上的一个动点,使线段OP的长度为整数的点P有()A.3个 B.4个 C.5个 D.6个6.如图,△ABC是⊙O的内接三角形,∠A=55°,则∠OCB为()A.35° B.45° C.55° D.65°7.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将它绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,恰好使B′C′∥AB,A'C′与AB交于点E,则A′E的长为()A.3 B.3.2 C.3.5 D.3.68.如图,直线与反比例函数的图象相交于、两点,过、两点分别作轴的垂线,垂足分别为点、,连接、,则四边形的面积为()A.4 B.8 C.12 D.249.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于()A.2∶5 B.4∶9 C.4∶25 D.2∶310.下列方程是一元二次方程的是()A. B.x2+5=0 C.x2+=8 D.x(x+3)=x2﹣111.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A. B. C. D.12.如图,是的直径,,是圆周上的点,且,则图中阴影部分的面积为()A. B. C. D.二、填空题(每题4分,共24分)13.点A(-2,y1),B(-1,y2)都在反比例函数y=-图象上,则y1_____________y2(选填“﹤”,“>”或”=”)14.二次函数的图像开口方向向上,则______0.(用“=、>、<”填空)15.将方程化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数、常数项分别为____.16.关于x的方程x2﹣x﹣m=0有两个不相等实根,则m的取值范围是__________.17.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是_____.18.某圆锥的底面半径是2,母线长是6,则该圆锥的侧面积等于________.三、解答题(共78分)19.(8分)某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).20.(8分)在,,.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.21.(8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?22.(10分)在平面直角坐标系中,已知抛物线的表达式为:y=﹣x2+bx+c.(1)根据表达式补全表格:抛物线顶点坐标与x轴交点坐标与y轴交点坐标(1,0)(0,-3)(2)在如图的坐标系中画出抛物线,并根据图象直接写出当y随x增大而减小时,自变量x的取值范围.23.(10分)在一个不透明的布袋中,有三个除颜色外其它均相同的小球,其中两个黑色,一个红色.(1)请用表格或树状图求出:一次随机取出2个小球,颜色不同的概率.(2)如果老师在布袋中加入若干个红色小球.然后小明通过做实验的方式猜测加入的小球数,小明每次換出一个小球记录下慎色并放回,实验数据如下表:实验次数1002003004005001000摸出红球78147228304373752请你帮小明算出老师放入了多少个红色小球.24.(10分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,且与反比例函数在第一象限的图象交于点,轴于点,.(1)求点的坐标;(2)动点在轴上,轴交反比例函数的图象于点.若,求点的坐标.25.(12分)如图,在锐角三角形ABC中,AB=4,BC=,∠B=60°,求△ABC的面积26.近段时间成都空气质量明显下降,市场上的空气净化器再次成为热销,某商店经销--种空气净化器,每台净化器的成本价为元,经过一段时间的销售发现,每月的销售量台与销售单价(元)的关系为.(1)该商店每月的利润为元,写出利润与销售单价的函数关系式;(2)若要使每月的利润为元,销售单价应定为多少元?(3)商店要求销售单价不低于元,也不高于元,那么该商店每月的最高利润和最低利润分别为多少?
参考答案一、选择题(每题4分,共48分)1、B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:
123456123456723456783456789456789105678910116789101112∵共有36种等可能的结果,掷得面朝上的点数之和是5的有4种情况,
∴掷得面朝上的点数之和是5的概率是:.
故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.2、D【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【详解】解:∵x2+8x-3=0,
∴x2+8x=3,
∴x2+8x+16=3+16,
∴(x+4)2=19,
∴m=4,n=19,
故选:D.【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.3、D【分析】根据圆锥侧面展开图的圆心角与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底面的周长,然后根据圆的周长公式l=2πr解出r的值即可.【详解】试题解析:设圆锥的底面半径为r圆锥的侧面展开扇形的半径为12,∵它的侧面展开图的圆心角是∴弧长即圆锥底面的周长是解得,r=4,∴底面圆的直径为1.故选:D.【点睛】本题考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4、D【解析】试题分析:如图:A、A1的坐标为(1,3),故错误;B、=3×2=6,故错误;C、B2C==,故错误;D、变化后,C2的坐标为(-2,-2),而A(-2,3),由图可知,∠AC2O=45°,故正确.故选D.5、A【分析】当P为AB的中点时OP最短,利用垂径定理得到OP垂直于AB,在直角三角形AOP中,由OA与AP的长,利用勾股定理求出OP的长;当P与A或B重合时,OP最长,求出OP的范围,由OP为整数,即可得到OP所有可能的长.【详解】当P为AB的中点时,由垂径定理得OP⊥AB,此时OP最短,∵AB=8,∴AP=BP=4,在直角三角形AOP中,OA=5,AP=4,根据勾股定理得OP=3,即OP的最小值为3;当P与A或B重合时,OP最长,此时OP=5,∴,则使线段OP的长度为整数的点P有3,4,5,共3个.故选A考点:1.垂径定理;2.勾股定理6、A【分析】首先根据圆周角定理求得∠BOC,然后根据三角形内角和定理和等腰三角形的性质即可求得∠OCB.【详解】解:∵∠A=55°,∴∠BOC=55°×2=110°,∵OB=OC,∴∠OCB=∠OBC=(180°-∠BOC)=35°,故答案为A.【点睛】本题主要考查了圆周角定理、等腰三角形的性质以及三角形的内角和定理,掌握并灵活利用相关性质定理是解答本题的关键.7、D【解析】如图,过点D作DF⊥AB,可证四边形EFDC'是矩形,可得C'E=DF,通过证明△BDF∽△BAC,可得,可求DF=2.4=C'E,即可求解.【详解】如图,过点D作DF⊥AB,∵∠C=90°,AC=6,BC=8,∴AB==10,∵将Rt△ABC绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,∴AC=A'C'=6,∠C=∠C'=90°,CD=BD=4,∵AB∥C'B'∴∠A'EB=∠A'C'B'=90°,且DF⊥AB,∴四边形EFDC'是矩形,∴C'E=DF,∵∠B=∠B,∠DFB=∠ACB=90°,∴△BDF∽△BAC∴,∴∴DF=2.4=C'E,∴A'E=A'C'﹣C'E=6﹣2.4=3.6,故选:D.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知旋转的定义、矩形的性质及相似三角形的判定与性质.8、C【分析】根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,得出S△AOC=S△ODB=3,再根据反比例函数的对称性可知:OC=OD,AC=BD,即可求出四边形ACBD的面积.【详解】解:∵过函数的图象上A,B两点分别作y轴的垂线,垂足分别为点C,D,∴S△AOC=S△ODB=|k|=3,又∵OC=OD,AC=BD,∴S△AOC=S△ODA=S△ODB=S△OBC=3,∴四边形ABCD的面积为=S△AOC+S△ODA+S△ODB+S△OBC=4×3=1.故选C.【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数(k为常数,k≠0)图象上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于.9、C【分析】由四边形ABCD是平行四边形,可得AD∥BE,由平行得相似,即△BEF∽△DAF,再利用相似比解答本题.【详解】∵,
∴,∵四边形是平行四边形,
∴,∥,
∴,,
∴,,故选:C.【点睛】本题考查了相似三角形的判定与性质.正确运用相似三角形的相似比是解题的关键.10、B【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【详解】A、方程x+2y=1是二元一次方程,故本选项错误;B、方程x2+5=0是一元二次方程,故本选项正确;C、方程x2+=8是分式方程,故本选项错误;D、方程x(x+3)=x2-1是一元一次方程,故本选项错误.故选B.【点睛】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.11、A【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.12、D【分析】连接OC,过点C作CE⊥OB于点E,根据圆周角定理得出,则有是等边三角形,然后利用求解即可.【详解】连接OC,过点C作CE⊥OB于点E∴是等边三角形故选:D.【点睛】本题主要考查圆周角定理及扇形的面积公式,掌握圆周角定理及扇形的面积公式是解题的关键.二、填空题(每题4分,共24分)13、<【分析】根据反比例函数的增减性和比例系数的关系即可判断.【详解】解:∵﹣3<0∴反比例函数y=-在每一象限内,y随x的增大而增大∵-2<-1<0∴y1<y2故答案为:<.【点睛】此题考查的是反比例函数的增减性,掌握反比例函数的增减性与比例系数的关系是解决此题的关键.14、>【分析】根据题意直接利用二次函数的图象与a的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>1.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a与抛物线的关系是解题的关键,图像开口方向向上,>1;图像开口方向向下,<1.15、5,.【分析】一元二次方程化为一般形式后,找出一次项系数与常数项即可.【详解】解:方程整理得:,则一次项系数、常数项分别为5,;故答案为:5,.【点睛】此题考查了一元二次方程的一般形式,其一般形式为.16、m>﹣【分析】根据根的判别式,令△>0,即可计算出m的值.【详解】∵关于x的方程x2﹣x﹣m=0有两个不相等实根,∴△=1﹣4×1×(﹣m)=1+4m>0,解得m>﹣.故答案为﹣.【点睛】本题考查了一元二次方程系数的问题,掌握根的判别式是解题的关键.17、(0,3)【分析】要求抛物线与y轴的交点,即令x=0,解方程即可.【详解】解:令x=0,则y=3,即抛物线y=2x2-5x+3与y轴的交点坐标是(0,3).故答案为(0,3).【点睛】本题考查了抛物线与y轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与y轴的交点坐标,令x=0,即可求得交点纵坐标.18、【分析】根据圆锥的侧面积公式即可得.【详解】圆锥的侧面积公式:,其中为底面半径,为圆锥母线则该圆锥的侧面积为故答案为:.【点睛】本题考查了圆锥的侧面积公式,熟记公式是解题关键.三、解答题(共78分)19、AC=6米;CD=5.2米.【分析】根据题意和正弦的定义求出AB的长,根据余弦的定义求出CD的长.【详解】解:由题意得,AB⊥EB,CD⊥AE,∴∠CDA=∠EBA=90°,∵∠E=30°,∴AB=AE=8米,∵BC=2米,∴AC=AB﹣BC=6米,∵∠DCA=90°﹣∠DAC=30°,∴CD=AC×cos∠DCA=6×≈5.2(米).【点睛】本题考查了解直角三角形的应用,解决本题的关键是①掌握特殊角的函数值,②能根据题意做构建直角三角形,③熟练掌握直角三角形的边角关系.20、(1)1,(2)45°(3),【解析】(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.证明,即可解决问题.(2)如图2中,设BD交AC于点O,BD交PC于点E.证明,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.证明即可解决问题.②如图3﹣2中,当点P在线段CD上时,同法可证:解决问题.【详解】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.,,,,,,,,,,线BD与直线CP相交所成的较小角的度数是,故答案为1,.(2)如图2中,设BD交AC于点O,BD交PC于点E.,,,,,,,,直线BD与直线CP相交所成的小角的度数为.(3)如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.,,,,,,,,,,,,,,,,,,,A,D,C,B四点共圆,,,,,设,则,,c.如图3﹣2中,当点P在线段CD上时,同法可证:,设,则,,,.【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.21、(1)y=−0.5x+160(120≤x≤180)(2)销售单价为180元时,销售利润最大,最大利润是7000元【分析】(1)首先由表格可知:销售单价每涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.【详解】(1)∵由表格可知:销售单价每涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100−0.5(x−120)=−0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;(2)设销售利润为w元,则w=(x−80)(−0.5x+160)=−x2+200x−12800=−(x−200)2+7200,∵a=−<0,∴当x<200时,w随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w=−(180−200)2+7200=7000(元),答:当销售单价为180元时,销售利润最大,最大利润是7000元.【点睛】此题考查了二次函数与一次函数的应用.注意理解题意,找到等量关系是关键.22、(1)补全表格见解析;(1)图象见解析;当y随x增大而减小时,x的取值范围是x>1.【分析】(1)根据待定系数法,把点(1,0),(0,-3)坐标代入得,则可确定抛物线解析式为,然后把它配成顶点式得到顶点的坐标;再根据对称性求出另一个交点坐标;(1)根据函数解析式和(1)表、描点联线画出函数图像,再根据图象性质即可得出结论;【详解】解:(1)把点(1,0),(0,-3)坐标代入得:,解得:,抛物线解析式为,化为顶点式为:,故顶点坐标为(1,1),对称轴为x=1,又∵点(1,0)是交点,故另一个交点为(3,0)补全表格如下:抛物线顶点坐标与x轴交点坐标与y轴交点坐标y=﹣x1+4x-3(1,1)(1,0)(3,0)(0,-3)(1)抛物线如图所示:当y随x增大而减小时,x的取值范围是x>1.【点睛】此题考查了待定系数法求二次函数解析式,以及二次函数的图象与性质,熟练掌握待定系数法是解本题的关键.23、(1)P=;(2)加入了5个红球【分析】(1)利用列表法表示出所有可能,进而得出结论即可;(2)根据概率列出相应的方程,求解即可.【详解】(1)列表如图,黑1黑2红黑1/(黑1,黑2)(黑1,红)黑2(黑2,黑1)/(黑2,红)红(红,黑1)(红,黑2)/一共有6种等可能事件,其中颜色不同的等可能事件有4种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度办公室装修与办公家具定制及安装服务合同样本
- 二零二五年度智慧交通PPP项目合同
- 2025年度石油化工行业吊车租赁合同2篇
- 瑜伽滚轮课程设计思路
- 海南政法职业学院《韩国语口语》2023-2024学年第一学期期末试卷
- 二零二五年度城市安全设施包工不包料施工管理协议3篇
- 2025年度战略合作合同合作目标与具体合作内容3篇
- 二零二五年度城市基础设施建设项目贷款合同6篇
- 课程设计区域标志牌
- 综合布线课程设计酒店
- 新课标背景下的大单元教学研究:国内外大单元教学发展与演进综述
- (正式版)HGT 4339-2024 机械设备用涂料
- 2024年医疗器械销售总结
- 基于物联网的支护机械远程监控系统
- SLT278-2020水利水电工程水文计算规范
- 心灵养生的疗愈之道
- 建筑设计公司的商业计划书
- 人教版PEP六年级英语下册课件unit1
- 人教版四年级数学上册寒假每日一练
- 律师法律服务应急预案
- 借款债务股东共同承担协议
评论
0/150
提交评论