理论力学-运动学课件_第1页
理论力学-运动学课件_第2页
理论力学-运动学课件_第3页
理论力学-运动学课件_第4页
理论力学-运动学课件_第5页
已阅读5页,还剩157页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三讲质点运动学第三讲1本讲导读质点、参照系、坐标系、质点位矢运动学方程、轨道位移、速度、加速度自然坐标系,切向、法向加速度相对运动,绝对(加)速度、相对(加)速度、牵连(加)速度.本讲导读质点、参照系、坐标系、质点位矢21质点具有一定质量的几何点自由质点:可以在空间自由移动的质点.确定它在空间的位置需要三个独立变量.2参考系坐标系参考系:为描述物体的运动而选取的参考物体用以标定物体的空间位置而设置的坐标系统坐标系:一、质点运动的描述1质点具有一定质量的几何点自由质点:可以在空间自由移动的质3位置矢量(位矢)从坐标原点o出发,指向质点所在位置P的一有向线段rxyP(x,y)位矢用坐标值表示为:r=xi+yj运动方程参数形式x=x(t)y=y(t)3位置矢量与运动方程位置矢量(位矢)rxyP(x,y)位矢用坐标值表示为:r=4自然坐标法

以点的轨迹作为一条曲线形式的坐标轴来确定动点的位置的方法叫自然坐标法。一、弧坐标,自然轴系1.弧坐标的运动方程S=f(t)自然坐标法以点的轨迹作为一条曲线形式的坐标轴5自然坐标法2.自然轴系自然坐标法2.自然轴系6设质点作曲线运动t时刻位于A点,位矢rAt+t时刻位于B点,位矢rB

在t时间内,位矢的变化量(即A到B的有向线段)称为位移。zyxorABrBAΔrΔr=

rB-

rA=AB4位移设质点作曲线运动在t时间内,位矢的变化量(即7速度是反映质点运动的快慢和方向的物理量定义:单位时间内质点所发生的位移(2)瞬时速度速度的方向为轨道上质点所在处的切线方向。(1)平均速度V=rt(m/s)rABrBAΔrV=drdt5速度速度是反映质点运动的快慢和方向的物理量定义:单位时间内质点所8(3)速率V=dsdt(4)直角坐标表示法jvivvyx+=(5)自然坐标表示法dsdtv=t沿切线方向(3)速率V=dsdt(4)直角坐标表示法jvivvyx9加速度是反映速度变化的物理量平均加速度瞬时加速度:xoyv1v2v1v2Δva=vt(m/s2)a=dvdt6加速度加速度是反映速度变化的物理量平均加速度瞬时加速度:xoyv110表示法vanr2=ttvadd=(1)直角坐标表示法jaiaayx+=(2)自然坐标表示法τanaan+=表示法vanr2=ttvadd=(1)直角坐标表示法jai11例题1已知质点的运动方程求:t=2秒时质点的位置、速度以及加速度()jtir22192t-+=解:dtjtirdv42-==()m/s822jivt-==()jijirt114221922×22+=-+==×例题1已知质点的运动方程求:t=2秒时质点的位置、速度以及加12jdtvda4-==方向沿y轴的负方向vyvx=2=-8jdtvda4-==方向沿y轴的负方向vyvx=2=-813例题2一质点沿半径为R的圆周运动,其路程s随时间t的变化规律为S=bt-1/2·ct2,式中b,c为大于零的常数,且b2>Rc。求质点的切向加速度和法向加速度。解:ctbdtdsv-==cdtdva-==tRctbRvan22)(-==例题2一质点沿半径为R的圆周运动,其路程s随时间t的变化规律14例题3.在半径R为10cm的铁圈上套一小环M,有杆OA穿过环M并绕铁圈上一点O转动,其角速度相当于5s内转一直角.求小环速度v和加速度a的大小.OAMR例题3.在半径R为10cm的铁圈上套一小环M,有杆OA穿15OAMRDs=2R

过O点作水平线与园环交于D并取为自然坐标的原点.解:(1)自然坐标法sOAMRDs=2R过O点作水平线与园环交解:16OAMR(2)直角坐标法Dxy取坐标如图.x=Rcos2y=Rsin2OAMR(2)直角坐标法Dxy取坐标如图.x=Rcos217刚体运动刚体运动18一、刚体运动形状和大小都不变的物体任意两质点之间的距离保持不变的质点系刚体:1刚体运动形式平动:刚体在运动过程中,其上任意两点的连线始终保持平行.可以用一个质点的运动来描述刚体的平动.刚体的平动ABA’B’B”A”一、刚体运动形状和大小都不变的物体任意两质点之间的距离保持不19转动:刚体上所有质点都绕同一直线作圆周运动.这条直线称为转轴.定轴转动:转轴固定不动的转动.转轴上的质点不动.只需一个量描述刚体绕该轴转动的角度,就确定了刚体的位置(一个变量).

刚体不受任何约束,可以在空间任意运动.可分解为质心的平动与绕通过质心的某轴线的定轴转动.一般运动:转动:刚体上所有质点都绕同一直线作圆周运动.这条直线称为202描述刚体转动的物理量角位移:角速度:角速度大小:由右手螺旋法则确定.P点线速度与角速度的关系:角坐标:qdqdtdqw=w角速度的方向:wwvvvPzkdtdrqrw=vvrv×=vwPqxzrv=w2描述刚体转动的物理量角位移:角速度:角速度大小:由右手21角加速度P点线加速度与角量的关系:对于定轴转动刚体各质元的角量相同,线量一般不同.wvvvPz2wtraran==dtdwvv=(定轴)kdtdkdtdrrv22qw==

rdtddtvdarrrr×==w)(rrrrwrarr=t×van=×角加速度P点线加速度与角量的关系:对于定轴转动刚体各质元的角22例如:半径为R的圆轮沿直线轨道作纯滚动,已知轮心的速度V0,试求圆轮的角速度ω及角加速度POOO’=S=RPO’RS=R··V0=RωS=R····a0=R例如:半径为R的圆轮沿直线轨道作纯滚动,已知POOO’=23定轴转动例题1直径d=32cm的飞轮以匀转速n=1500r/min转动。求轮缘上一点的速度和加速度。解:轮缘上任上点M的速度大小为rv=w2d=×30nπ=8πm/sv沿轮缘上M点的切线,其指向与轮子的转向相对应定轴转动例题1直径d=32cm的飞轮以匀转速n=1500r/24又由题知=0,故aτ=0,则M点的加速度大小为2wran=a==a沿过M点的半径而指向轴心2d×230nπ()=400π2m/s2又由题知=0,故aτ=0,则M点的加速度大小为2wran=25例题2.图示为卷筒提取重物装置,卷筒O

的半径r=0.2m,B为定滑轮.卷筒在制动阶段,转动方向如图示,其转动方程为

=3t–t2.式中以rad度计,t以s计.求t=1s时卷筒边缘上任一点M的速度和加速度,以及重物A的速度和加速度.不计钢丝绳的伸长.OrBMAvA例题2.图示为卷筒提取重物装置,卷筒O的半径r=26OrBMAvA解:取卷筒为研究对象.=3-2t当t=1s时,=1rad/s=-2rad/s2vM=raM=raMn=r2

vMaMaMnaM=0.2×1=0.2m/s=0.2×(-2)=-0.4m/s2=0.2×12=0.2m/s2OrBMAvA解:取卷筒为研究对象.=3-2t当t27OrBMAvAvMaMaMnaM取重物A为研究对象.

选取重物A的坐标x,取=0时A的位置为x轴的原点,卷筒作逆时针转动时A的运动方向为x轴的正向.xO'xAaAsA

=xAvM=vA=0.2m/saM=aA

=-0.4m/s2OrBMAvAvMaMaMnaM取重物A为研究对象.28第八章点的合成运动第八章点的合成运动29§8–1点的合成运动的概念

§8–2点的速度合成定理

§8–3牵连运动为平动时点的加速度合成定理

§8–4牵连运动为转动时点的加速度合成定理习题课第八章点的合成运动§8–1点的合成运动的概念第八章30点的合成运动的概念1.问题的提出OABM例10-1.一水平放置的园板绕过中心O的铅直轴以角速度旋转,在园板上有一光滑直槽AB,槽内放一小球M.若以园板为参考系,小球M将如何运动?若以地面为参考系,小球M将如何运动?点的合成运动的概念1.问题的提出OABM例10-1.一水31§8-1点的合成运动的概念

一.坐标系:

1.静坐标系:把固结于地面上的坐标系称为静坐标系,简称静系。

2.动坐标系:把固结于相对于地面运动物体上的坐标系,称为动坐标系,简称动系。例如在行驶的汽车。前两章中我们研究点和刚体的运动,一般都是以地面为参考体的。然而在实际问题中,还常常要在相对于地面运动着的参考系上观察和研究物体的运动。例如,从行驶的汽车上观看飞机的运动等,坐在行驶的火车内看下雨的雨点是向后斜落的等。

为什么在不同的坐标系或参考体上观察物体的运动会有不同的结果呢?我们说事物都是相互联系着的。下面我们就将研究参考体与观察物体运动之间的联系。为了便于研究,下面先来介绍有关的概念。运动学§8-1点的合成运动的概念一.坐标系:前两章中我们研究32三.三种运动及三种速度与三种加速度。

1.绝对运动:动点对静系的运动。

2.相对运动:动点对动系的运动。例如:人在行驶的汽车里走动。

3.牵连运动:动系相对于静系的运动例如:行驶的汽车相对于地面的运动。

绝对运动中,动点的速度与加速度称为绝对速度与绝对加速度相对运动中,动点的速度和加速度称为相对速度与相对加速度牵连运动中,牵连点的速度和加速度称为牵连速度与牵连加速度牵连点:在任意瞬时,动坐标系中与动点相重合的点,也就是设想将该动点固结在动坐标系上,而随着动坐标系一起运动时该点叫牵连点。点的运动刚体的运动运动学二.动点:所研究的点(运动着的点)。三.三种运动及三种速度与三种加速度。绝对运动中,动点的速度与33下面举例说明以上各概念:

四.动点的选择原则:一般选择主动件与从动件的连接点,它是对两个坐标系都有运动的点。

五.动系的选择原则:动点对动系有相对运动,且相对运动的轨迹是已知的,或者能直接看出的。运动学动点:动系:静系:AB杆上A点固结于凸轮O'上固结在地面上下面举例说明以上各概念:四.动点的选择原则:34运动学相对运动:牵连运动:曲线(圆弧)直线平动绝对运动:直线运动学相对运动:牵连运动:曲线(圆弧)直线平动绝对运动:直线35运动学绝对速度:相对速度:牵连速度:运动学绝对速度:相对速度:牵连速度:36绝对加速度:相对加速度:牵连加速度:运动学绝对加速度:运动学37动点:A(在圆盘上)动系:O'A摆杆静系:机架绝对运动:曲线(圆周)相对运动:直线牵连运动:定轴转动运动学动点:A1(在O'A1

摆杆上)动系:圆盘静系:机架绝对运动:曲线(圆弧)相对运动:曲线牵连运动:定轴转动运动学38

若动点A在偏心轮上时动点:A(在AB杆上)

A(在偏心轮上)动系:偏心轮AB杆静系:地面地面绝对运动:直线圆周(红色虚线)相对运动:圆周(曲线)曲线(未知)牵连运动:定轴转动平动[注]要指明动点应在哪个物体上,但不能选在动系上。运动学运动学39例题曲柄导杆机构的运动由滑块A带动,已知OA=r且转动的角速度为.试分析滑块A的运动.OABCD例题曲柄导杆机构的运动由滑块A带动,已知OA=r且转动的40说明:va—动点的绝对速度;

vr—动点的相对速度;

ve—动点的牵连速度,是动系上一点(牵连点)的速度

I)动系作平动时,动系上各点速度都相等。

II)动系作转动时,ve必须是该瞬时动系上与 动点相重合点的速度。

即在任一瞬时动点的绝对速度等于其牵连速度与相对速度的矢量和,这就是点的速度合成定理。运动学点的速度合成定理:说明:va—动点的绝对速度;即在任一瞬时动点的绝对速度等于41由上述例题可看出,求解合成运动的速度问题的一般步骤为:

选取动点,动系和静系。

三种运动的分析。三种速度的分析。根据速度合成定理作出速度平行四边形。根据速度平行四边形,求出未知量。恰当地选择动点、动系和静系是求解合成运动问题的关键。运动学,

reavvv+=由上述例题可看出,求解合成运动的速度问题的一般步骤为:运动学42动点、动系和静系的选择原则

动点、动系和静系必须分别属于三个不同的物体,否则绝对、相对和牵连运动中就缺少一种运动,不能成为合成运动

动点相对动系的相对运动轨迹易于直观判断(已知绝对运动和牵连运动求解相对运动的问题除外)。运动学动点、动系和静系的选择原则运动学43运动学二.解题步骤

1.选择动点、动系、静系。

2.分析三种运动:绝对运动、相对运动和牵连运动。

3.作速度分析,画出速度平行四边形,在坐标轴上投影,

求出有关未知量(速度,角速度)。

4.作加速度分析,画出加速度矢量图,在坐标轴上投影,

求出有关的加速度、角加速度未知量。运动学二.解题步骤44点的速度合成定理是瞬时矢量式,共包括大小‚方向六个元素,已知任意四个元素,就能求出其他两个。二.应用举例运动学点的速度合成定理是瞬时矢量式,共包括大小‚方向六个元素,45例题1.曲柄导杆机构如图所示.已知OA=r,曲杆BCD的速度vD的大小为v.求该瞬时杆OA转动的角速度.OABCDvD例题1.曲柄导杆机构如图所示.已知OA=r,曲杆BCD的46OABCDvD解:取滑块A为动点.xyx´y´va=ve

+vrvavevr建立静系O—xy和动系B—x´y´A的绝对运动—以O为园心r为半径的园运动.A的相对运动—沿y´轴的直线运动.动系的牵连运动—沿x轴的直线平动.va

=rve=vD=v解得:OABCDvD解:取滑块A为动点.xyx´y´va=v47运动学[例2]

桥式吊车已知:小车水平运行,速度为v平,物块A相对小车垂直上升的速度为v。求物块A的运行速度。运动学[例2]桥式吊车已知:小车水平运行,速度为v平48运动学作出速度平四边形如图示,则物块A的速度大小和方向为解:选取动点:物块A

动系:小车

静系:地面相对运动:直线;相对速度vr=v

方向牵连运动:平动;牵连速度ve=v平方向绝对运动:曲线;绝对速度va

的大小,方向待求由速度合成定理:运动学作出速度平四边形如图示,则物块A的速度大小和方向为解:49解:取OA杆上A点为动点,摆杆O1B为动系,基座为静系。 绝对速度va

=r

方向

OA

相对速度vr

=?方向//O1B

牵连速度ve

=?方向O1B()运动学[例2]

曲柄摆杆机构已知:OA=r,,OO1=l图示瞬时OAOO1

求:摆杆O1B角速度1由速度合成定理va=vr+

ve

作出速度平行四边形如图示。解:取OA杆上A点为动点,摆杆O1B为动系,(50由速度合成定理va=vr+

ve

,作出速度平行四边形如图示。解:动点取直杆上A点,动系固结于圆盘,

静系固结于基座。绝对速度va

=?待求,方向//AB

相对速度

vr

=?未知,方向CA

牵连速度ve=OA=2e,方向

OA运动学[例3]

圆盘凸轮机构已知:OC=e,

,(匀角速度)图示瞬时,OCCA

O,A,B三点共线。求:从动杆AB的速度。由速度合成定理va=vr+ve,解:动点取直杆上A点51例题4.半径为r偏心距为e的凸轮,以匀角速度绕O轴转动,AB杆长l,A端置于凸轮上,B端用铰链支承.在图示瞬时AB杆处于水平位置.试求该瞬时AB杆的角速度AB.BAreOClAB例题4.半径为r偏心距为e的凸轮,以匀角速度绕O轴转动52BAreOClAB解:取AB杆的A点为动点.建立静系O—xy和动系O—x´y´A的绝对运动—以B为中心l为半径的园运动.A的相对运动—沿凸轮O边缘的曲线运动.牵连运动—动系随凸轮O且角速度为的定轴转动.牵连点—凸轮O上被AB杆的A端盖住的A´点且随凸轮

O作角速度为的定轴转动.va=ve

+vrva

=l

AB

xyx´y´vavevr(A´)ve

=rsin解得:BAreOClAB解:取AB杆的A点为动点.建立静系O—53运动学—牵连运动为平动时点的加速度合成定理即当牵连运动为平动时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和。∴一般式可写为:§8-3牵连运动为平动时点的加速度合成定理运动学—牵连运动为平动时点的加速度合成定理即当牵连运动为平动54解:取杆上的A点为动点,

动系与凸轮固连。运动学[例1]

已知:凸轮半径求:j=60o时,顶杆AB的加速度。解:取杆上的A点为动点,运动学[例1]已知:凸轮半径55绝对速度va=?,方向AB

;绝对加速度aa=?,方向AB,待求。相对速度vr

=?,方向CA;

相对加速度art=?方向CA ,方向沿CA指向C牵连速度ve=v0,方向→;牵连加速度ae=a0,方向→运动学由速度合成定理做出速度平行四边形,如图示。绝对速度va=?,方向AB;绝对加速度aa=?56运动学因牵连运动为平动,故有作加速度矢量图如图示,将上式投影到法线上,得整理得[注]加速度矢量方程的投影是等式两端的投影,与静平衡方程的投影关系不同n运动学因牵连运动为平动,故有作加速度矢量图如图示,整理得[注57例题2.具有园弧形滑道的曲柄滑道机构,用来使滑道

BC获得间歇的往复运动.已知曲柄以匀角速度=10rad/s绕O轴转动,OA=10cm,园弧道的半径r=7.5cm.当曲柄转到图示位置sin=0.6

时,求滑道BC的速度和加速度.OABCr例题2.具有园弧形滑道的曲柄滑道机构,用来使滑道BC获58OABCr解:取滑块A为动点.

建立静系O—xy和动系C—x´y´

A的绝对运动—以O为中心OA为半径的园运动.A的相对运动—沿弧形滑道的曲线运动.牵连运动—动系沿x轴的直线平动.va=ve

+vr

(1)xyx´y´vavevrDrsin=OAsinva

=OA

ve=vBC把(1)式向AD方向投影得:vacos[90o-(+)]=vecos(90o-)ve=vBC=1.6m/svr=2.2m/sOABCr解:取滑块A为动点.建立静系O—xy59OABCr取滑块A为动点.aanaeararnaa=ae+ar(2)aa=aan+aaaa=0aan=OA2=10m/s2ae=aBC把(2)式向AD方向投影得:ar=arn+araancos[180o-(+)]=aecos+arnae=aBC=-123.5m/s2DOABCr取滑块A为动点.aanaeararnaa60已知:OA=l,=45o

时,w,e;

求:小车的速度与加速度.解:动点:OA杆上A点;动系:固结在滑杆上;静系:固结在机架上。

绝对运动:圆周运动,相对运动:直线运动,牵连运动:平动;[例3]曲柄滑杆机构请看动画运动学已知:OA=l,=45o时,w,e;61小车的速度:

根据速度合成定理 做出速度平行四边形,如图示投至x轴:,方向如图示小车的加速度:根据牵连平动的加速度合成定理做出速度矢量图如图示。运动学小车的速度:根据速度合成定理 做出速62第九章刚体的平面运动第九章刚体的平面运动63§9–1刚体平面运动的概述

§9–2平面运动分解为平动和转动·

刚体的平面运动方程

§9–3平面图形内各点的速度

§9–4平面图形内各点的加速度·

加速度瞬心的概念习题课第九章刚体的平面运动§9–1刚体平面运动的概述第九章64

刚体的平面运动是工程上常见的一种运动,这是一种较为复杂的运动.对它的研究可以在研究刚体的平动和定轴转动的基础上,通过运动合成和分解的方法,将平面运动分解为上述两种基本运动.然后应用合成运动的理论,推导出平面运动刚体上一点的速度和加速度的计算公式.运动学§9-1刚体平面运动的概述一.平面运动的定义

在运动过程中,刚体上任一点到某一固定平面的距离始终保持不变.也就是说,刚体上任一点都在与该固定平面平行的某一平面内运动.具有这种特点的运动称为刚体的平面运动.刚体的平面运动是工程上常见的一种运动,这是65例如:曲柄连杆机构中连杆AB的运动,A点作圆周运动,B点作直线运动,因此,AB杆的运动既不是平动也不是定轴转动,而是平面运动.运动学例如:曲柄连杆机构中连杆AB的运动,A66§9-2平面运动分解为平动和转动·

刚体的平面运动方程ABA’B’A’B”§9-2平面运动分解为平动和转动·ABA’B’A’B”67平面运动方程对于每一瞬时

t

,都可以求出对应的,图形S在该瞬时的位置也就确定了。平面运动方程对于每一瞬时t,都可以求出对应的,68运动学例如车轮的运动.车轮的平面运动可以看成是车轮随同车厢的平动和相对车厢的转动的合成.

车轮对于静系的平面运动(绝对运动)车厢(动系Axy)相对静系的平动(牵连运动)车轮相对车厢(动系Axy)的转动(相对运动)

运动学例如车轮的运动.车轮的平面运动可以看成是车69运动学

我们称动系上的原点A为基点,于是车轮的平面运动随基点A的平动绕基点A'的转动刚体的平面运动可以分解为随基点的平动和绕基点的转动.运动学我们称动系上的原点A为基点,于是车轮的平面运动随基点70运动学

平面运动随基点平动的运动规律与基点的选择有关,而绕基点转动的规律与基点选取无关.(即在同一瞬间,图形绕任一基点转动的,都是相同的)基点的选取是任意的。(通常选取运动情况已知的点作为基点)运动学平面运动随基点平动的运动规律与基点的选择有关,而绕基71§9-3平面图形内各点的速度

运动学根据速度合成定理则B点速度为:

一.基点法(合成法)取B为动点,则B点的运动可视为牵连运动为平动和相对运动为圆周运动的合成已知:图形S内一点A的速度,图形角速度求:指向与转向一致.取A为基点,将动系固结于A点,动系作平动。§9-3平面图形内各点的速度运动学根据72由于A,B点是任意的,因此表示了图形上任意两点速度间的关系.由于恒有,因此将上式在AB上投影,有—速度投影定理即平面图形上任意两点的速度在该两点连线上的投影彼此相等.这种求解速度的方法称为速度投影法.运动学即平面图形上任一点的速度等于基点的速度与该点随图形绕基点转动的速度的矢量和.这种求解速度的方法称为基点法,也称为合成法.它是求解平面图形内一点速度的基本方法.二.速度投影法—速度投影定理即平面图形上任意两点的速度在该两点连线上的73

三.瞬时速度中心法(速度瞬心法)

1.问题的提出若选取速度为零的点作为基点,求解速度问题的计算会大大简化.于是,自然会提出,在某一瞬时图形是否有一点速度等于零?如果存在的话,该点如何确定?运动学

2.速度瞬心的概念平面图形S,某瞬时其上一点A速度,图形角速度,沿方向取半直线AL,然后顺的转向转90o至AL'的位置,在AL'上取长度则: 三.瞬时速度中心法(速度瞬心法)运动学74

即在某一瞬时必唯一存在一点速度等于零,该点称为平面图形在该瞬时的瞬时速度中心,简称速度瞬心.运动学3.几种确定速度瞬心位置的方法

①已知图形上一点的速度和图形角速度,可以确定速度瞬心的位置.(P点)且P在顺转向绕A点转90º的方向一侧.

②已知一平面图形在固定面上作无滑动的滚动,则图形与固定面的接触点P为速度瞬心.即在某一瞬时必唯一存在一点速度等于零,该点称75

运动学

已知某瞬时图形上A,B两点速度大小,且(b)(a)

③已知某瞬间平面图形上A,B两点速度的方向,且过A,B两点分别作速度的垂线,交点

P即为该瞬间的速度瞬心.运动学④已知某瞬时图形上A,B两点速度(b)(76

运动学另:对④种(a)的情况,若vA=vB,则是瞬时平动.⑤已知某瞬时图形上A,B两点的速度方向相同,且不与AB连线垂直.此时,图形的瞬心在无穷远处,图形的角速度=0,图形上各点速度相等,这种情况称为瞬时平动.(此时各点的加速度不相等)运动学另:对④种(a)的情况,若vA=vB,⑤已知某77

例如:曲柄连杆机构在图示位置时,连杆BC作瞬时平动.此时连杆BC的图形角速度,BC杆上各点的速度都相等.但各点的加速度并不相等.设匀,则而的方向沿AC的,瞬时平动与平动不同运动学例如:曲柄连杆机构在图示位置时,连杆BC作瞬784.速度瞬心法利用速度瞬心求解平面图形上点的速度的方法,称为速度瞬心法.平面图形在任一瞬时的运动可以视为绕速度瞬心的瞬时转动,速度瞬心又称为平面图形的瞬时转动中心。若P点为速度瞬心,则任意一点A的速度方向AP,指向与一致。

运动学5.注意的问题

①速度瞬心在平面图形上的位置不是固定的,而是随时间不断变化的。在任一瞬时是唯一存在的。

②速度瞬心处的速度为零,加速度不一定为零。不同于定轴转动

③刚体作瞬时平动时,虽然各点的速度相同,但各点的加速度是不一定相同的。不同于刚体作平动。4.速度瞬心法运动学5.注意的问题79解:机构中,OA作定轴转动,AB作平面运动,滑块B作平动。

①基点法(合成法)研究AB,以A为基点,且方向如图示。()运动学[例1]

已知:曲柄连杆机构OA=AB=l,取柄OA以匀转动。求:当=45º时,滑块B的速度及AB杆的角速度.根据在B点做速度平行四边形,如图示。解:机构中,OA作定轴转动,AB作平面运①基点法(合成法)(80()试比较上述三种方法的特点。运动学根据速度投影定理不能求出

②速度投影法研究AB,

,方向OA,方向沿BO直线

③速度瞬心法研究AB,已知的方向,因此可确定出P点为速度瞬心()试比较上述三种方法的特点。运动学根据速度投影定理不能81第三讲质点运动学第三讲82本讲导读质点、参照系、坐标系、质点位矢运动学方程、轨道位移、速度、加速度自然坐标系,切向、法向加速度相对运动,绝对(加)速度、相对(加)速度、牵连(加)速度.本讲导读质点、参照系、坐标系、质点位矢831质点具有一定质量的几何点自由质点:可以在空间自由移动的质点.确定它在空间的位置需要三个独立变量.2参考系坐标系参考系:为描述物体的运动而选取的参考物体用以标定物体的空间位置而设置的坐标系统坐标系:一、质点运动的描述1质点具有一定质量的几何点自由质点:可以在空间自由移动的质84位置矢量(位矢)从坐标原点o出发,指向质点所在位置P的一有向线段rxyP(x,y)位矢用坐标值表示为:r=xi+yj运动方程参数形式x=x(t)y=y(t)3位置矢量与运动方程位置矢量(位矢)rxyP(x,y)位矢用坐标值表示为:r=85自然坐标法

以点的轨迹作为一条曲线形式的坐标轴来确定动点的位置的方法叫自然坐标法。一、弧坐标,自然轴系1.弧坐标的运动方程S=f(t)自然坐标法以点的轨迹作为一条曲线形式的坐标轴86自然坐标法2.自然轴系自然坐标法2.自然轴系87设质点作曲线运动t时刻位于A点,位矢rAt+t时刻位于B点,位矢rB

在t时间内,位矢的变化量(即A到B的有向线段)称为位移。zyxorABrBAΔrΔr=

rB-

rA=AB4位移设质点作曲线运动在t时间内,位矢的变化量(即88速度是反映质点运动的快慢和方向的物理量定义:单位时间内质点所发生的位移(2)瞬时速度速度的方向为轨道上质点所在处的切线方向。(1)平均速度V=rt(m/s)rABrBAΔrV=drdt5速度速度是反映质点运动的快慢和方向的物理量定义:单位时间内质点所89(3)速率V=dsdt(4)直角坐标表示法jvivvyx+=(5)自然坐标表示法dsdtv=t沿切线方向(3)速率V=dsdt(4)直角坐标表示法jvivvyx90加速度是反映速度变化的物理量平均加速度瞬时加速度:xoyv1v2v1v2Δva=vt(m/s2)a=dvdt6加速度加速度是反映速度变化的物理量平均加速度瞬时加速度:xoyv191表示法vanr2=ttvadd=(1)直角坐标表示法jaiaayx+=(2)自然坐标表示法τanaan+=表示法vanr2=ttvadd=(1)直角坐标表示法jai92例题1已知质点的运动方程求:t=2秒时质点的位置、速度以及加速度()jtir22192t-+=解:dtjtirdv42-==()m/s822jivt-==()jijirt114221922×22+=-+==×例题1已知质点的运动方程求:t=2秒时质点的位置、速度以及加93jdtvda4-==方向沿y轴的负方向vyvx=2=-8jdtvda4-==方向沿y轴的负方向vyvx=2=-894例题2一质点沿半径为R的圆周运动,其路程s随时间t的变化规律为S=bt-1/2·ct2,式中b,c为大于零的常数,且b2>Rc。求质点的切向加速度和法向加速度。解:ctbdtdsv-==cdtdva-==tRctbRvan22)(-==例题2一质点沿半径为R的圆周运动,其路程s随时间t的变化规律95例题3.在半径R为10cm的铁圈上套一小环M,有杆OA穿过环M并绕铁圈上一点O转动,其角速度相当于5s内转一直角.求小环速度v和加速度a的大小.OAMR例题3.在半径R为10cm的铁圈上套一小环M,有杆OA穿96OAMRDs=2R

过O点作水平线与园环交于D并取为自然坐标的原点.解:(1)自然坐标法sOAMRDs=2R过O点作水平线与园环交解:97OAMR(2)直角坐标法Dxy取坐标如图.x=Rcos2y=Rsin2OAMR(2)直角坐标法Dxy取坐标如图.x=Rcos298刚体运动刚体运动99一、刚体运动形状和大小都不变的物体任意两质点之间的距离保持不变的质点系刚体:1刚体运动形式平动:刚体在运动过程中,其上任意两点的连线始终保持平行.可以用一个质点的运动来描述刚体的平动.刚体的平动ABA’B’B”A”一、刚体运动形状和大小都不变的物体任意两质点之间的距离保持不100转动:刚体上所有质点都绕同一直线作圆周运动.这条直线称为转轴.定轴转动:转轴固定不动的转动.转轴上的质点不动.只需一个量描述刚体绕该轴转动的角度,就确定了刚体的位置(一个变量).

刚体不受任何约束,可以在空间任意运动.可分解为质心的平动与绕通过质心的某轴线的定轴转动.一般运动:转动:刚体上所有质点都绕同一直线作圆周运动.这条直线称为1012描述刚体转动的物理量角位移:角速度:角速度大小:由右手螺旋法则确定.P点线速度与角速度的关系:角坐标:qdqdtdqw=w角速度的方向:wwvvvPzkdtdrqrw=vvrv×=vwPqxzrv=w2描述刚体转动的物理量角位移:角速度:角速度大小:由右手102角加速度P点线加速度与角量的关系:对于定轴转动刚体各质元的角量相同,线量一般不同.wvvvPz2wtraran==dtdwvv=(定轴)kdtdkdtdrrv22qw==

rdtddtvdarrrr×==w)(rrrrwrarr=t×van=×角加速度P点线加速度与角量的关系:对于定轴转动刚体各质元的角103例如:半径为R的圆轮沿直线轨道作纯滚动,已知轮心的速度V0,试求圆轮的角速度ω及角加速度POOO’=S=RPO’RS=R··V0=RωS=R····a0=R例如:半径为R的圆轮沿直线轨道作纯滚动,已知POOO’=104定轴转动例题1直径d=32cm的飞轮以匀转速n=1500r/min转动。求轮缘上一点的速度和加速度。解:轮缘上任上点M的速度大小为rv=w2d=×30nπ=8πm/sv沿轮缘上M点的切线,其指向与轮子的转向相对应定轴转动例题1直径d=32cm的飞轮以匀转速n=1500r/105又由题知=0,故aτ=0,则M点的加速度大小为2wran=a==a沿过M点的半径而指向轴心2d×230nπ()=400π2m/s2又由题知=0,故aτ=0,则M点的加速度大小为2wran=106例题2.图示为卷筒提取重物装置,卷筒O

的半径r=0.2m,B为定滑轮.卷筒在制动阶段,转动方向如图示,其转动方程为

=3t–t2.式中以rad度计,t以s计.求t=1s时卷筒边缘上任一点M的速度和加速度,以及重物A的速度和加速度.不计钢丝绳的伸长.OrBMAvA例题2.图示为卷筒提取重物装置,卷筒O的半径r=107OrBMAvA解:取卷筒为研究对象.=3-2t当t=1s时,=1rad/s=-2rad/s2vM=raM=raMn=r2

vMaMaMnaM=0.2×1=0.2m/s=0.2×(-2)=-0.4m/s2=0.2×12=0.2m/s2OrBMAvA解:取卷筒为研究对象.=3-2t当t108OrBMAvAvMaMaMnaM取重物A为研究对象.

选取重物A的坐标x,取=0时A的位置为x轴的原点,卷筒作逆时针转动时A的运动方向为x轴的正向.xO'xAaAsA

=xAvM=vA=0.2m/saM=aA

=-0.4m/s2OrBMAvAvMaMaMnaM取重物A为研究对象.109第八章点的合成运动第八章点的合成运动110§8–1点的合成运动的概念

§8–2点的速度合成定理

§8–3牵连运动为平动时点的加速度合成定理

§8–4牵连运动为转动时点的加速度合成定理习题课第八章点的合成运动§8–1点的合成运动的概念第八章111点的合成运动的概念1.问题的提出OABM例10-1.一水平放置的园板绕过中心O的铅直轴以角速度旋转,在园板上有一光滑直槽AB,槽内放一小球M.若以园板为参考系,小球M将如何运动?若以地面为参考系,小球M将如何运动?点的合成运动的概念1.问题的提出OABM例10-1.一水112§8-1点的合成运动的概念

一.坐标系:

1.静坐标系:把固结于地面上的坐标系称为静坐标系,简称静系。

2.动坐标系:把固结于相对于地面运动物体上的坐标系,称为动坐标系,简称动系。例如在行驶的汽车。前两章中我们研究点和刚体的运动,一般都是以地面为参考体的。然而在实际问题中,还常常要在相对于地面运动着的参考系上观察和研究物体的运动。例如,从行驶的汽车上观看飞机的运动等,坐在行驶的火车内看下雨的雨点是向后斜落的等。

为什么在不同的坐标系或参考体上观察物体的运动会有不同的结果呢?我们说事物都是相互联系着的。下面我们就将研究参考体与观察物体运动之间的联系。为了便于研究,下面先来介绍有关的概念。运动学§8-1点的合成运动的概念一.坐标系:前两章中我们研究113三.三种运动及三种速度与三种加速度。

1.绝对运动:动点对静系的运动。

2.相对运动:动点对动系的运动。例如:人在行驶的汽车里走动。

3.牵连运动:动系相对于静系的运动例如:行驶的汽车相对于地面的运动。

绝对运动中,动点的速度与加速度称为绝对速度与绝对加速度相对运动中,动点的速度和加速度称为相对速度与相对加速度牵连运动中,牵连点的速度和加速度称为牵连速度与牵连加速度牵连点:在任意瞬时,动坐标系中与动点相重合的点,也就是设想将该动点固结在动坐标系上,而随着动坐标系一起运动时该点叫牵连点。点的运动刚体的运动运动学二.动点:所研究的点(运动着的点)。三.三种运动及三种速度与三种加速度。绝对运动中,动点的速度与114下面举例说明以上各概念:

四.动点的选择原则:一般选择主动件与从动件的连接点,它是对两个坐标系都有运动的点。

五.动系的选择原则:动点对动系有相对运动,且相对运动的轨迹是已知的,或者能直接看出的。运动学动点:动系:静系:AB杆上A点固结于凸轮O'上固结在地面上下面举例说明以上各概念:四.动点的选择原则:115运动学相对运动:牵连运动:曲线(圆弧)直线平动绝对运动:直线运动学相对运动:牵连运动:曲线(圆弧)直线平动绝对运动:直线116运动学绝对速度:相对速度:牵连速度:运动学绝对速度:相对速度:牵连速度:117绝对加速度:相对加速度:牵连加速度:运动学绝对加速度:运动学118动点:A(在圆盘上)动系:O'A摆杆静系:机架绝对运动:曲线(圆周)相对运动:直线牵连运动:定轴转动运动学动点:A1(在O'A1

摆杆上)动系:圆盘静系:机架绝对运动:曲线(圆弧)相对运动:曲线牵连运动:定轴转动运动学119

若动点A在偏心轮上时动点:A(在AB杆上)

A(在偏心轮上)动系:偏心轮AB杆静系:地面地面绝对运动:直线圆周(红色虚线)相对运动:圆周(曲线)曲线(未知)牵连运动:定轴转动平动[注]要指明动点应在哪个物体上,但不能选在动系上。运动学运动学120例题曲柄导杆机构的运动由滑块A带动,已知OA=r且转动的角速度为.试分析滑块A的运动.OABCD例题曲柄导杆机构的运动由滑块A带动,已知OA=r且转动的121说明:va—动点的绝对速度;

vr—动点的相对速度;

ve—动点的牵连速度,是动系上一点(牵连点)的速度

I)动系作平动时,动系上各点速度都相等。

II)动系作转动时,ve必须是该瞬时动系上与 动点相重合点的速度。

即在任一瞬时动点的绝对速度等于其牵连速度与相对速度的矢量和,这就是点的速度合成定理。运动学点的速度合成定理:说明:va—动点的绝对速度;即在任一瞬时动点的绝对速度等于122由上述例题可看出,求解合成运动的速度问题的一般步骤为:

选取动点,动系和静系。

三种运动的分析。三种速度的分析。根据速度合成定理作出速度平行四边形。根据速度平行四边形,求出未知量。恰当地选择动点、动系和静系是求解合成运动问题的关键。运动学,

reavvv+=由上述例题可看出,求解合成运动的速度问题的一般步骤为:运动学123动点、动系和静系的选择原则

动点、动系和静系必须分别属于三个不同的物体,否则绝对、相对和牵连运动中就缺少一种运动,不能成为合成运动

动点相对动系的相对运动轨迹易于直观判断(已知绝对运动和牵连运动求解相对运动的问题除外)。运动学动点、动系和静系的选择原则运动学124运动学二.解题步骤

1.选择动点、动系、静系。

2.分析三种运动:绝对运动、相对运动和牵连运动。

3.作速度分析,画出速度平行四边形,在坐标轴上投影,

求出有关未知量(速度,角速度)。

4.作加速度分析,画出加速度矢量图,在坐标轴上投影,

求出有关的加速度、角加速度未知量。运动学二.解题步骤125点的速度合成定理是瞬时矢量式,共包括大小‚方向六个元素,已知任意四个元素,就能求出其他两个。二.应用举例运动学点的速度合成定理是瞬时矢量式,共包括大小‚方向六个元素,126例题1.曲柄导杆机构如图所示.已知OA=r,曲杆BCD的速度vD的大小为v.求该瞬时杆OA转动的角速度.OABCDvD例题1.曲柄导杆机构如图所示.已知OA=r,曲杆BCD的127OABCDvD解:取滑块A为动点.xyx´y´va=ve

+vrvavevr建立静系O—xy和动系B—x´y´A的绝对运动—以O为园心r为半径的园运动.A的相对运动—沿y´轴的直线运动.动系的牵连运动—沿x轴的直线平动.va

=rve=vD=v解得:OABCDvD解:取滑块A为动点.xyx´y´va=v128运动学[例2]

桥式吊车已知:小车水平运行,速度为v平,物块A相对小车垂直上升的速度为v。求物块A的运行速度。运动学[例2]桥式吊车已知:小车水平运行,速度为v平129运动学作出速度平四边形如图示,则物块A的速度大小和方向为解:选取动点:物块A

动系:小车

静系:地面相对运动:直线;相对速度vr=v

方向牵连运动:平动;牵连速度ve=v平方向绝对运动:曲线;绝对速度va

的大小,方向待求由速度合成定理:运动学作出速度平四边形如图示,则物块A的速度大小和方向为解:130解:取OA杆上A点为动点,摆杆O1B为动系,基座为静系。 绝对速度va

=r

方向

OA

相对速度vr

=?方向//O1B

牵连速度ve

=?方向O1B()运动学[例2]

曲柄摆杆机构已知:OA=r,,OO1=l图示瞬时OAOO1

求:摆杆O1B角速度1由速度合成定理va=vr+

ve

作出速度平行四边形如图示。解:取OA杆上A点为动点,摆杆O1B为动系,(131由速度合成定理va=vr+

ve

,作出速度平行四边形如图示。解:动点取直杆上A点,动系固结于圆盘,

静系固结于基座。绝对速度va

=?待求,方向//AB

相对速度

vr

=?未知,方向CA

牵连速度ve=OA=2e,方向

OA运动学[例3]

圆盘凸轮机构已知:OC=e,

,(匀角速度)图示瞬时,OCCA

O,A,B三点共线。求:从动杆AB的速度。由速度合成定理va=vr+ve,解:动点取直杆上A点132例题4.半径为r偏心距为e的凸轮,以匀角速度绕O轴转动,AB杆长l,A端置于凸轮上,B端用铰链支承.在图示瞬时AB杆处于水平位置.试求该瞬时AB杆的角速度AB.BAreOClAB例题4.半径为r偏心距为e的凸轮,以匀角速度绕O轴转动133BAreOClAB解:取AB杆的A点为动点.建立静系O—xy和动系O—x´y´A的绝对运动—以B为中心l为半径的园运动.A的相对运动—沿凸轮O边缘的曲线运动.牵连运动—动系随凸轮O且角速度为的定轴转动.牵连点—凸轮O上被AB杆的A端盖住的A´点且随凸轮

O作角速度为的定轴转动.va=ve

+vrva

=l

AB

xyx´y´vavevr(A´)ve

=rsin解得:BAreOClAB解:取AB杆的A点为动点.建立静系O—134运动学—牵连运动为平动时点的加速度合成定理即当牵连运动为平动时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和。∴一般式可写为:§8-3牵连运动为平动时点的加速度合成定理运动学—牵连运动为平动时点的加速度合成定理即当牵连运动为平动135解:取杆上的A点为动点,

动系与凸轮固连。运动学[例1]

已知:凸轮半径求:j=60o时,顶杆AB的加速度。解:取杆上的A点为动点,运动学[例1]已知:凸轮半径136绝对速度va=?,方向AB

;绝对加速度aa=?,方向AB,待求。相对速度vr

=?,方向CA;

相对加速度art=?方向CA ,方向沿CA指向C牵连速度ve=v0,方向→;牵连加速度ae=a0,方向→运动学由速度合成定理做出速度平行四边形,如图示。绝对速度va=?,方向AB;绝对加速度aa=?137运动学因牵连运动为平动,故有作加速度矢量图如图示,将上式投影到法线上,得整理得[注]加速度矢量方程的投影是等式两端的投影,与静平衡方程的投影关系不同n运动学因牵连运动为平动,故有作加速度矢量图如图示,整理得[注138例题2.具有园弧形滑道的曲柄滑道机构,用来使滑道

BC获得间歇的往复运动.已知曲柄以匀角速度=10rad/s绕O轴转动,OA=10cm,园弧道的半径r=7.5cm.当曲柄转到图示位置sin=0.6

时,求滑道BC的速度和加速度.OABCr例题2.具有园弧形滑道的曲柄滑道机构,用来使滑道BC获139OABCr解:取滑块A为动点.

建立静系O—xy和动系C—x´y´

A的绝对运动—以O为中心OA为半径的园运动.A的相对运动—沿弧形滑道的曲线运动.牵连运动—动系沿x轴的直线平动.va=ve

+vr

(1)xyx´y´vavevrDrsin=OAsinva

=OA

ve=vBC把(1)式向AD方向投影得:vacos[90o-(+)]=vecos(90o-)ve=vBC=1.6m/svr=2.2m/sOABCr解:取滑块A为动点.建立静系O—xy140OABCr取滑块A为动点.aanaeararnaa=ae+ar(2)aa=aan+aaaa=0aan=OA2=10m/s2ae=aBC把(2)式向AD方向投影得:ar=arn+araancos[180o-(+)]=aecos+arnae=aBC=-123.5m/s2DOABCr取滑块A为动点.aanaeararnaa141已知:OA=l,=45o

时,w,e;

求:小车的速度与加速度.解:动点:OA杆上A点;动系:固结在滑杆上;静系:固结在机架上。

绝对运动:圆周运动,相对运动:直线运动,牵连运动:平动;[例3]曲柄滑杆机构请看动画运动学已知:OA=l,=45o时,w,e;142小车的速度:

根据速度合成定理 做出速度平行四边形,如图示投至x轴:,方向如图示小车的加速度:根据牵连平动的加速度合成定理做出速度矢量图如图示。运动学小车的速度:根据速度合成定理 做出速143第九章刚体的平面运动第九章刚体的平面运动144§9–1刚体平面运动的概述

§9–2平面运动分解为平动和转动·

刚体的平面运动方程

§9–3平面图形内各点的速度

§9–4平面图形内各点的加速度·

加速度瞬心的概念习题课第九章刚体的平面运动§9–1刚体平面运动的概述第九章145

刚体的平面运动是工程上常见的一种运动,这是一种较为复杂的运动.对它的研究可以在研究刚体的平动和定轴转动的基础上,通过运动合成和分解的方法,将平面运动分解为上述两种基本运动.然后应用合成运动的理论,推导出平面运动刚体上一点的速度和加速度的计算公式.运动学§9-1刚体平面运动的概述一.平面运动的定义

在运动过程中,刚体上任一点到某一固定平面的距离始终保持不变.也就是说,刚体上任一点都在与该固定平面平行的某一平面内运动.具有这种特点的运动称为刚体的平面运动.刚体的平面运动是工程上常见的一种运动,这是146例如:曲柄连杆机构中连杆AB的运动,A点作圆周运动,B点作直线运动,因此,AB杆的运动既不是平动也不是定轴转动,而是平面运动.运动学例如:曲柄连杆机构中连杆AB的运动,A147§9-2平面运动分解为平动和转动·

刚体的平面运动方程ABA’B’A’B”§9-2平面运动分解为平动和转动·ABA’B’A’B”148平面运动方程对于每一瞬时

t

,都可以求出对应的,图形S在该瞬时的位置也就确定了。平面运动方程对于每一瞬时t,都可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论