2022-2023学年林芝八年级数学第一学期期末质量跟踪监视试题含解析_第1页
2022-2023学年林芝八年级数学第一学期期末质量跟踪监视试题含解析_第2页
2022-2023学年林芝八年级数学第一学期期末质量跟踪监视试题含解析_第3页
2022-2023学年林芝八年级数学第一学期期末质量跟踪监视试题含解析_第4页
2022-2023学年林芝八年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某文化用品商店分两批购进同一种学生用品,已知第二批购进的数量是第一批购进数量的3倍,两批购进的单价和所用的资金如下表:单价(元)所用资金(元)第一批2000第二批6300则求第一批购进的单价可列方程为()A. B.C. D.2.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCB C.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB3.如图,,点是内的一定点,点分别在上移动,当的周长最小时,的值为()A. B. C. D.4.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E,连接BD,DE,若∠A=30°,AB=AC,则∠BDE的度数为().A.52.5° B.60° C.67.5° D.75°5.如图,在中,其中,的平分线交于点,是的垂直平分线,点是垂足.已知,则图中长度为的线段有()A.1条 B.2条 C.3条 D.4条6.已知y=m+3xm2−8是正比例函数,则A.8 B.4 C.±3 D.37.若分式方程无解,则的值为()A.5 B.4 C.3 D.08.若,则的结果是()A.7 B.9 C.﹣9 D.119.如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,则△DBE的周长等于()A.10cm B.8cm C.12cm D.9cm10.x,y满足方程,则的值为()A. B.0 C. D.二、填空题(每小题3分,共24分)11.已知(x-2018)2=15,则(x-2017)2+(x-2019)2的值是_________12.的算术平方根是_____.13.若有意义,则___________.14.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作__________;15.如图,在△ABC中,∠A=40°,点D为AB的延长线上一点,且∠CBD=120°,则∠C=_____.16.如图,平面直角坐标系中有一正方形,点的坐标为点坐标为________.17.若式子有意义,则x的取值范围是.18.A(3,y1),B(1,y2)是直线y=kx+3(k>0)上的两点,则y1____y2(填“>”或“<).三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,(1)作出关于轴对称的;(2)在轴上找出一个点,使点到、两点的距离相等.20.(6分)为了了解400名八年级男生的身体发育情况,随机抽取了100名八年级男生进行身高测量,得到统计表:估计该校八年级男生的平均身高为______________cm.身高(cm)人数组中值221504516028170518021.(6分)阅读下列解题过程:;.请回答下列问题:(1)观察上面的解题过程,请直接写出式子;(2)利用上面所提供的解法,请化简的值.22.(8分)计算或因式分解:(1)计算:(a2-4)÷;(2)因式分解:a(n-1)2-2a(n-1)+a.23.(8分)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?24.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF⊥DE于点F.(1)求证:△ACD≌△BEC;(2)求证:CF平分∠DCE.25.(10分)已知一次函数的表达式是y=(m-4)x+12-4m(m为常数,且m≠4)(1)当图像与x轴交于点(2,0)时,求m的值;(2)当图像与y轴的交点位于原点下方时,判断函数值y随着x的增大而变化的趋势;(3)在(2)的条件下,当函数值y随着自变量x的增大而减小时,求其中任意两条直线与y轴围成的三角形面积的取值范围.26.(10分)小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500m,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20min到达公园,则小明在步行过程中停留的时间需作怎样的调整?

参考答案一、选择题(每小题3分,共30分)1、B【分析】先根据“购进的数量=所用资金÷单价”得到第一批和第二批购进学生用品的数量,再根据“第二批购进的数量是第一批购进数量的3倍”即得答案.【详解】解:第一批购进的学生用品数量为,第二批购进的学生用品数量为,根据题意列方程得:.故选:B.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.2、D【解析】试题分析:根据题意知,BC边为公共边.A.由“SSS”可以判定△ABC≌△DCB,故本选项错误;B.由“SAS”可以判定△ABC≌△DCB,故本选项错误;C.由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D.由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选D.考点:全等三角形的判定.3、D【分析】过P点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P点作OB的对称点,过P作OA的对称点,连接,交点为M,N,则此时PMN的周长最小,且△和△为等腰三角形.此时∠=180°-α;设∠NPM=x°,则180°-x°=2(∠-x°)所以x°=180°-2α【点睛】求出M,N在什么位子△PMN周长最小是解此题的关键.4、C【分析】根据AB=AC,利用三角形内角和定理求出∠ABC、∠ACB的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数.【详解】解:∵AB=AC,

∴∠ABC=∠ACB,

∵∠A=30°,

∴∠ABC=∠ACB=(180°-30°)=75°,

∵以B为圆心,BC长为半径画弧,

∴BE=BD=BC,

∴∠BDC=∠ACB=75°,

∴∠CBD=180°-75°-75°=30°,

∴∠DBE=75°-30°=45°,

∴∠BED=∠BDE=(180°-45°)=67.5°.

故选:C.【点睛】本题考查了学生对等腰三角形的性质和三角形内角和定理等知识点的理解和掌握,此题的突破点是利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求得答案.5、C【分析】由角平分线的性质可得,垂直平分线的性质可得,然后通过勾股定理计算一下其他的线段的长度,从而可得出答案.【详解】∵BD平分,,∵是的垂直平分线在和中,∴长度为的线段有AB,BE,EC故选:C.【点睛】本题主要考查角平分线的性质及垂直平分线的性质,掌握角平分线的性质和垂直平分线的性质是解题的关键.6、D【解析】直接利用正比例函数的定义分析得出即可.【详解】∵y=(m+2)xm2﹣8是正比例函数,∴m2﹣8=2且m+2≠0,解得m=2.故选:D.【点睛】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.7、A【分析】解分式方程,用含a的式子表示x,根据分式方程无解,得到x-4=0,得到关于a的方程,即可求解.【详解】解:,方程两边同时乘以(x-4)得,,由于方程无解,,,,故选:.【点睛】本题考查根据分式方程解的情况求字母的取值,解题关键是熟练解分式方程.8、D【分析】根据完全平方的特征对式子进行整理,即(a-)2+2,最后整体代入进行计算可得结果.【详解】解:∵,∴=(a﹣)2+2=(﹣3)2+2=9+2=11,故选:D.【点睛】本题主要考查了代数式的求值,解题的关键是掌握完全平方公式.9、A【解析】试题分析:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,由勾股定理得:AC=,AE=,∴AE=AC=BC,∴DE+BD=CD+BE=BC,∵AC=BC,∴BD+DE=AC=AE,∴△BDE的周长是BD+DE+BE=AE+BE=AB=1.故选A.考点:1.角平分线的性质;2.垂线;3.勾股定理;4.等腰直角三角形.10、A【分析】利用整体法将两式相加,即可求得.【详解】解:,①+②得:,,故选A.【点睛】本题考查代数式的求值,灵活运用加减消元的思想是关键.二、填空题(每小题3分,共24分)11、1【分析】将变形为,将看作一个整体,利用完全平方公式展开后再代入已知条件即可.【详解】解:∵∴展开得:∵∴原式故答案为:1.【点睛】本题考查的知识点是整式的化简求值以及完全平方公式的应用,掌握完全平方公式的内容是解此题的关键.12、2【详解】∵,的算术平方根是2,∴的算术平方根是2.【点睛】这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.13、1【解析】∵有意义,∴x⩾0,−x⩾0,∴x=0,则==1故答案为114、(3,5

).【分析】根据有序数对确定点的位置,可得答案.【详解】解:在电影院中,若将电影票上“7排4号”记作(7,4),,那么”3排5号”应记作(3,5),

故答案为:(3,5

).【点睛】本题考查了坐标确定位置,利用有序数对确定位置注意排在前,号在后.15、80°【分析】根据三角形的外角定理即可求解.【详解】由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故答案为80°【点睛】此题主要考查三角形的外角定理,解题的关键熟知三角形的外角性质.16、【分析】过点作轴于,过点作轴,过点作交CE的延长线于.先证明,得到,,根据点的坐标定义即可求解.【详解】解:如图,过点作轴于,过点作轴,过点作交CE的延长线于.,,.四边形是正方形,.易求.又∴,,,点的坐标为,,点到轴的距离为,点的坐标为.故答案为:【点睛】本题考查了平面直角坐标系点的坐标,全等三角形的判定与性质,根据题意,添加辅助线构造全等三角形是解题关键.17、且【详解】∵式子在实数范围内有意义,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.18、>.【分析】由k>0,利用一次函数的性质可得出y值随x值的增大而增大.再结合3>1即可得出y1>y1.【详解】解:∵k>0,∴y值随x值的增大而增大.又∵3>1,∴y1>y1.故答案为:>.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析.【分析】(1)根据轴对称的关系即可画图;(2)作线段AB的垂直平分线,与x轴的交点即为点P.【详解】(1)如图:(2)如图:【点睛】此题考查画图,正确掌握轴对称图形的特点,线段垂直平分线的确定方法是解题的关键.20、161.6cm【分析】根据平均数的计算公式列出算式,再计算即可.【详解】该校七年级男生的平均身高为:.【点睛】本题考查了平均数的计算,熟悉相关性质是解题的关键.21、(1);(2)【分析】(1)观察题目中所给的运算方法级即可求解;(2)根据(1)的结论,化简各个二次根式后合并计算即可求解.【详解】(1)(2)【点睛】本题考查二次根式的分母有理化,熟练确定分母的有理化因式和合并同类二次根式是解决问题的关键.22、(1)原式=a2-2a;(2)原式=a(n-2)2.【解析】试题分析:(1)先把括号内的进行因式分解,然后把除法转化成乘法进行约分即可得解;(2)首先提取公因式a,再利用完全平方公式分解因式得出答案.试题解析:(1)原式=(a+2)(a-2)=a(a-2)=a2-2a;(2)原式=a[(n-1)2-2(n-1)+1]=a(n-1-1)2=a(n-2)2.23、(1)第一次每支铅笔的进价为4元.(2)每支售价至少是2元.【解析】(1)方程的应用解题关键是找出等量关系,列出方程求解.本题等量关系为:第一次购进数量-第二次购进数量=1;(2)设售价为y元,求出利润表达式,然后列不等式解答.利润表达式为:第一次购进数量×第一次每支铅笔的利润+第二次购进数量×第二次每支铅笔的利润第一次购进数量×第一次每支铅笔的利润+第二次购进数量×第二次每支铅笔的利润【详解】解:(1)设第一次每支铅笔进价为x元,由第二次每支铅笔进价为x元.第一次购进数量-第二次购进数量=1-=1.(2)设售价为y元,由已知·+·≥420,

解得y≥2.

答:每支售价至少是2元.24、(1)详见解析;(2)详见解析.【分析】(1)根据平行线性质求出∠A=∠B,根据SAS推出△ACD≌△BEC;(2)根据全等三角形性质推出CD=CE,根据等腰三角形性质即可证明CF平分∠DCE.【详解】(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∵,∴△ACD≌△BEC(SAS),(2)∵△ACD≌△BEC,∴CD=CE,又∵CF⊥DE,∴CF平分∠DCE.【点睛】本题主要考查三角形的判定定理和性质定理以及等腰三角形的性质定理,掌握SAS判定三角形全等,是解题的关键.25、(1);(2)当时,函数值y随着自变量x的增大而减小;当时,函数值y随着自变量x的增大而增大;(3)【分析】(1)把(2,0)代入解析式即可求解;(2)先求出直线与y轴交点为(0,12-4m),故可得到不等式,再根据一次函数的性质即可额求解;(3)先判断函数图像恒过点(4,-4),再根据函数图像求得两条直线形成的面积最大为,故可求解.【详解】(1)∵一次函数经过点(2,0)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论