应用多元统计分析课后答案_第1页
应用多元统计分析课后答案_第2页
应用多元统计分析课后答案_第3页
应用多元统计分析课后答案_第4页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品应用多元统计分析课后答案第五章 聚类分析5.1 判别分析和聚类分析有何区别?答:即根据一定的判别准则,判定一个样本归属于哪一类。具体而言,设有 n个样本,对每个样本测得 p项指标(变量)的数据,已知每个样本属于 k个类别(或总体)中的某一类,通过找出一个最优的划分, 使得不同类别的样本尽可能地区别开, 并判别该样本属于哪个总体。聚类分析是分析如何对样品(或变量)进行量化分类的问题。在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类, 而聚类分析是在不知道类的情况下进行分类。5.2 试述系统聚类的基本思想。答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。5.3 对样品和变量进行聚类分析时, 所构造的统计量分别是什么?简要说明为什么这样构造?答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。因为我们把 n个样本看作p维空间的 n个点。点之间的距离即可代表样品间的相似度。常用的距离为pq)1/q(一)闵可夫斯基距离:dij(q)(XikXjkk1q取不同值,分为(1)绝对距离(q1)感谢下载载精品pdij

(1)

X

ik

X

jk12)欧氏距离(q2)p2)1/2dij(2)(XikXjkk1(3)切比雪夫距离( q )dij()maxXikXjk1kp1pXikXjkdij(L)XikXjkpk1(二)马氏距离dij2(M) (Xi Xj)Σ1(Xi Xj)(三)兰氏距离对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。将变量看作 p维空间的向量,一般用(一)夹角余弦pXikXjkcosijk1pp(Xik2)(Xjk2)k1k1(二)相关系数p(XikXi)(XjkXj)rijk1pp(Xik2(Xjk2Xi)Xj感)谢下载载k1k1精品5.4 在进行系统聚类时,不同类间距离计算方法有何区别?选择距离公式应遵循哪些原则?答: 设dij表示样品 Xi与Xj之间距离,用 Dij表示类Gi与Gj之间的距离。(1).最短距离法DijXimindijGi,XjGjDkrXimindijmin{Dkp,Dkq}Gk,XjGr(2)最长距离法DpqmaxdijXiGp,XjGqDkr max dij max{Dkp,Dkq}Xi Gk,Xj Gr(3)中间距离法Dkr21Dkp21Dkq2Dpq222感谢下载载精品其中(4)重心法Dpq2(XpXq)(XpXq)Xr1(npXpnqXq)nrDkr2npDkp2nqDkq2npnqDpq2nnn2rrr(5)类平均法212Dkr21dij2npDkp2nDpqdijqDkq2npnqXiGpXjGjnknrXiGkXjGrnrnr(6)可变类平均法Dkr2(1)(npDkp2nqDkq2)Dpq2nrnr其中 是可变的且 <1(7)可变法Dkr21(Dkp2Dkq2)Dpq2其中是可变的且<12(8)离差平方和法感谢下载载精品ntSt (Xit Xt)(Xit Xt)t1Dkr2nknpDkp2nknqDkq2nkDpq2nrnknrnknrnk通常选择距离公式应注意遵循以下的基本原则:1)要考虑所选择的距离公式在实际应用中有明确的意义。如欧氏距离就有非常明确的空间距离概念。马氏距离有消除量纲影响的作用。2)要综合考虑对样本观测数据的预处理和将要采用的聚类分析方法。如在进行聚类分析之前已经对变量作了标准化处理,则通常就可采用欧氏距离。3)要考虑研究对象的特点和计算量的大小。样品间距离公式的选择是一个比较复杂且带有一定主观性的问题, 我们应根据研究对象的特点不同做出具体分折。 实际中,聚类分析前不妨试探性地多选择几个距离公式分别进行聚类, 然后对聚类分析的结果进行对比分析, 以确定最合适的距离测度方法。5.5试述K均值法与系统聚类法的异同。答:相同:K—均值法和系统聚类法一样,都是以距离的远近亲疏为标准进行聚类的。不同:系统聚类对不同的类数产生一系列的聚类结果, 而K—均值法只能产生指定类数的聚类结果。具体类数的确定, 离不开实践经验的积累; 有时也可以借助系统聚类法以一部分样品为感谢下载载精品对象进行聚类,其结果作为 K—均值法确定类数的参考。5.6 试述K均值法与系统聚类有何区别?试述有序聚类法的基本思想。答:K均值法的基本思想是将每一个样品分配给最近中心(均值)的类中。系统聚类对不同的类数产生一系列的聚类结果,而K—均值法只能产生指定类数的聚类结果。具体类数的确定,有时也可以借助系统聚类法以一部分样品为对象进行聚类,其结果作为K均值法确定类数的参考。有序聚类就是解决样品的次序不能变动时的聚类分析问题。如果用X(1),X(2),,X(n)表示n个有序的样品,则每一类必须是这样的形式,即X(i),X(i1),,X(j),其中1in,且jn,简记为Gi{i,i1,,j}。在同一类中的样品是次序相邻的。一般的步骤是(1)计算直径{D(i,j)}。(2)计算最小分类损失函数{L[p(l,k)]}。(3)确定分类个数k。(4)最优分类。5.7检测某类产品的重量,抽了六个样品,每个样品只测了一个指标,分别为1,2,3,6,9,11.试用最短距离法,重心法进行聚类分析。1)用最短距离法进行聚类分析。采用绝对值距离,计算样品间距离阵01 02 1 05 4 3 0感谢下载载精品876301098520由上表易知 中最小元素是 于是将 , , 聚为一类,记为计算距离阵0306308520中最小元素是=2于是将,聚为一类,记为计算样本距离阵03 06 3 0中最小元素是 于是将 ,聚为一类,记为因此,感谢下载载精品2)用重心法进行聚类分析计算样品间平方距离阵01 04 1 025 16 9 064 49 36 9 0100 81 64 25 4 0易知 中最小元素是 于是将 , , 聚为一类,记为计算距离阵016 049 9 081 25 4 0感谢下载载精品注:计算方法 ,其他以此类推。中最小元素是 =4 于是将 , 聚为一类,记为计算样本距离阵016 064 16 0中最小元素是 于是将 ,聚为一类,记为因此,5.8下表是15个上市公司2001年的一些主要财务指标,使用系统聚类法和K-均值法分别对这些公司进行聚类,并对结果进行比较分析。公司净资产每股净总资产资产负流动负每股净净利润增总资产编号收益率利润周转率债率债比率资产长率增长率111.090.210.0596.9870.531.86-44.0481.99211.960.590.7451.7890.734.957.0216.11感谢下载载精品300.030.03181.99100-2.98103.3321.18411.580.130.1746.0792.181.146.55-56.325-6.19-0.090.0343.382.241.52-1713.5-3.366100.470.4868.4864.7-11.560.85710.490.110.3582.9899.871.02100.2330.32811.12-1.690.12132.14100-0.66-4454.39-62.7593.410.040.267.8698.511.25-11.25-11.43101.160.010.5443.71001.03-87.18-7.411130.220.160.487.3694.880.53729.41-9.97128.190.220.3830.311002.73-12.31-2.771395.79-5.20.5252.3499.34-5.42-9816.52-46.821416.550.350.9372.3184.052.14115.95123.4115-24.18-1.160.7956.2697.84.81-533.89-27.74解:令净资产收益率为 X1,每股净利润 X2,总资产周转率为 X3,资产负债率为 X4,流动负债比率为 X5,每股净资产为 X6,净利润增长率为 X7,总资产增长率为 X8,用spss对公司聚类分析的步骤如下:a) 系统聚类法:1. 在SPSS窗口中选择Analyze→Classify→HierachicalCluster ,调出系统聚类分析主界面,并将变量X1-X8移入Variables 框中。在Cluster栏中选择Cases单选按钮,即对样品进行聚类(若选择 Variables ,则对变量进行聚类)。在 Display 栏中选择Statistics 和Plots 复选框,这样在结果输出窗口中可以同时得到聚类结果统计量和统计图。图5.1 系统分析法主界面感谢下载载精品点击Statistics按钮,设置在结果输出窗口中给出的聚类分析统计量。我们选择 Agglomeration schedule 与Cluster Membership 中的Rangeofsolution2-4 ,如图5.2所示,点击Continue 按钮,返回主界面。(其中,Agglomerationschedule 表示在结果中给出聚类过程表,显示系统聚类的详细步骤;Proximitymatrix 表示输出各个体之间的距离矩阵;ClusterMembership 表示在结果中输出一个表,表中显示每个个体被分配到的类别,Rangeofsolution2-4 即将所有个体分为 2至4类。)点击Plots按钮,设置结果输出窗口中给出的聚类分析统计图。选中Dendrogram复选框和Icicle栏中的None单选按钮,如图5.3,即只给出聚类树形图,而不给出冰柱图。单击Continue 按钮,返回主界面。图5.2Statistics 子对话框 图5.3 Plots 子对话框4. 点击Method 按钮,设置系统聚类的方法选项。ClusterMethod 下拉列表用于指定聚类的方法,这里选择 Between-groupinkage (组间平均数连接距离);Measure 栏用于选择对距离和相似性的测度方法, 选感谢下载载精品择SquaredEuclideandistance (欧氏距离);单击 Continue 按钮,返回主界面。图5.4Method 子对话框 图5.5Save子对话框点击Save按钮,指定保存在数据文件中的用于表明聚类结果的新变量。None表示不保存任何新变量;Singlesolution表示生成一个分类变量,在其后的矩形框中输入要分成的类数;Rangeofsolutions表示生成多个分类变量。这里我们选择Rangeofsolutions,并在后面的两个矩形框中分别输入2和4,即生成三个新的分类变量,分别表明将样品分为2类、3类和4类时的聚类结果,如图5.5。点击Continue,返回主界面。点击OK按钮,运行系统聚类过程。聚类结果分析:下面的群集成员表给出了把公司分为 2类,3类,4类时各个样本所属类别的情况,另外,从右边的树形图也可以直观地看到, 若将15个公司分为2类,则13独自为一类,其余的为一类;若分为3类,则公司8分离出来,自成一类。以此类推。表5.1各样品所属类别表感谢下载载精品图5.6聚类树形图b) K均值法的步骤如下:1. 在SPSS窗口中选择Analyze→Classify→K-MeansCluster ,调出K均值聚类分析主界面,并将变量 X1-X8 移入 Variables 框中。在Method 框中选择Iterateclassify ,即使用K-means算法不断计算新的类中心,并替换旧的类中心(若选择Classify only,则根据初始类中心进行聚类,在聚类过程中不改变类中心)。在 Number of Cluster后面的矩形框中输入想要把样品聚成的类数,这里我们输入3,即将15个公司分为3类。Centers按钮,则用于设置迭代的初始类中心。如果不手工设置,则系统会自动设置初始类中心,这里我们不作设置。)感谢下载载精品图5.7 K均值聚类分析主界面2. 点击Iterate 按钮,对迭代参数进行设置。 MaximumIterations 参数框用于设定 K-means 算法迭代的最大次数,输入 10,ConvergenceCriterion 参数框用于设定算法的收敛判据, 输入0,只要在迭代的过程中先满足了其中的参数,则迭代过程就停止。单击 Continue ,返回主界面。图5.8Iterate子对话框点击Save按钮,设置保存在数据文件中的表明聚类结果的新变量。我们将两个复选框都选中,其中Clustermembership选项用于建立一个代表聚类结果的变量,默认变量名为qcl_1;Distancefromclustercenter选项建立一个新变量,代表各观测量与其所属类中心的欧氏距离。单击Continue按钮返回。感谢下载载精品图5.9Save子对话框点击Options按钮,指定要计算的统计量。选中Initialclustercenters和Clusterinformationforeachcase 复选框。这样,在输出窗口中将给出聚类的初始类中心和每个公司的分类信息,包括分配到哪一类和该公司距所属类中心的距离。单击 Continue 返回。图5.10Options子对话框点击OK按钮,运行K均值聚类分析程序。聚类结果分析:以下三表给出了各公司所属的类及其与所属类中心的距离, 聚类形成的类的中心的各变量值以及各类的公司数。由以上表格可得公司 13与公司8各自成一类,其余的公司为一类。通过比较可知,两种聚类方法得到的聚类结果完全一致。感谢下载载精品5.9下表是某年我国 16个地区农民支出情况的抽样调查数据,每个地区调查了反映每人平均生活消费支出情况的六个经济指标。 试通过统计分析软件用不同的方法进行系统聚类分析,并比较何种方法与人们观察到的实际情况较接近。地区食品衣着燃料住房交通和娱乐教通讯育文化北京190.3343.779.7360.5449.019.04天津135.236.410.4744.1636.493.94河北95.2122.839.322.4422.812.8山西104.7825.116.49.8918.173.25内蒙128.4127.638.9412.5823.992.27辽宁145.6832.8317.7927.2939.093.47吉林159.3733.3818.3711.8125.295.22黑龙江116.2229.5713.2413.7621.756.04上海221.1138.6412.53115.6550.825.89江苏144.9829.1211.6742.627.35.74浙江169.9232.7512.7247.1234.355安徽135.1123.0915.6223.5418.186.39福建144.9221.2616.9619.5221.756.73感谢下载载精品江西140.5421.517.6419.1915.974.94山东115.8430.2612.233.633.773.85河南101.1823.268.4620.220.54.3解:令食品支出为 X1,衣着支出为 X2,燃料支出为 X3,住房支出为 X4,交通和通讯支出为X5,娱乐教育文化支出为 X6,用spss对16各地区聚类分析的步骤如 5.8题,不同的方法在第4个步骤的 Method 子对话框中选择不同的 Clustermethod 。1. Between-groupinkage (组间平均数连接距离)上表给出了把全国 16个地区分为 2类、3类和4类时,各地区所属的类别,另外从右边的树形图也可以直观地观察到,若用组间平均数连接距离将这些地区分为 3类,则9(上海)独自为一类,1(北京)和 11(浙江)为一类,剩余地区为一类。2. Within-grouplinkage (组内平均连接距离)感谢下载载精品若用组内平均数连接距离将这些地区分为 3类,则9(上海)独自为一类, 1(北京)独自为一类,剩余地区为一类。3. Nearestneighbor (最短距离法)若用最短距离法将这些地区分为 3类,则9(上海)独自为一类, 1(北京)独自为一类,剩余地区为一类。4. Furthestneighbor (最远距离法)若用最远距离法将这些地区分为 3类,则9(上海)独自为一类,1(北京)和11(浙江)为一类,剩余地区为一类。感谢下载载精品Centroidcluster(重心法)若用重心法将这些地区分为 3类,则9(上海)独自为一类,1(北京)和11(浙江)为一类,剩余地区为一类。Mediancluster(中位数距离)若用中位数距离法将这些地区分为 3类,则9(上海)独自为一类,1(北京)和11(浙江)为一类,剩余地区为一类。7. Wardmethod (离差平方和)感谢下载载精品若用离差平方和法将这些地区分为 3类,则9(上海),1(北京)和 11(浙江)为一类, 2(天津)、6(辽宁)、7(吉林)、10(江苏)、12(安徽)、13(福建)和 14(江西)为一类,剩余地区为一类。5.10 根据上题数据通过 SPSS统计分析软件进行快速聚类运算,并与系统聚类分析结果进行比较。解:快速聚类运算即 K均值法聚类,具体步骤同 5.8,聚类结果如下:感谢下载载精品聚类的结果为 9(上海)独自为一类, 1(北京)、2(天津)、6(辽宁)、7(吉林)、10(江苏)、11(浙江)、13(福建)和 14(江西)为一类,剩余地区为一类。5.11下表是2003年我国省会城市和计划单列市的主要经济指标:人均GDP1(元)、x人均工业产值 x2(元)、客运总量x3(万人)、货运总量x4(万吨)、地方财政预算内收入 x5(亿元)、固定资产投资总额x6(亿元)、在岗职工占总人口的比例x7(%)、在岗职工人均工资额x8(元)、城乡居民年底储蓄余额x9(亿元)。试通过统计分析软件进行系统聚类分析,并比较何种方法与人们观察到的实际情况较接近。城市x1x2x3x4x5x6x7x8x9北京3188633168305230675920037.82531644013021天津2643343732350734672093418.818641829585石家庄151341315911841000494169.512301043864太原1575215831297515243319722.8126766089呼和浩特1899111257350841552118213.514112556沈阳2326815446661214638155714.81496142613大连2914527615110021081140714.7175613111100长春1863021045699910894629412.5138783120哈尔滨148257561645895187642317.7124511514上海4658677083721263868922721.0273060519455南京2754743853167914801379415.4221911305604杭州3266749823213416811571711.8246614695076宁波3254347904249313791355510.9236910687910合肥106211171460344641362458.313903591福州2228121310968082506737611.815058763厦门5359093126444130557023838.619023974南昌142219205572844543121011.013914833济南2343722634581014357642913.5160275847青岛2470535506146630551254814.515339086305郑州1667414023107078476637312.71353104988武汉2127817083118816618062317.41373128感谢下载载精品2006长沙154468873106010636043416987059110.07广州482205540429752885271082880372195925.175深圳191833475110986793298753105219899169.693南宁81763390701658933617013174518.31海口16442145531328330412991481284416.59重庆71

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论