2022年山东省济宁市鱼台县九年级数学第一学期期末复习检测模拟试题含解析_第1页
2022年山东省济宁市鱼台县九年级数学第一学期期末复习检测模拟试题含解析_第2页
2022年山东省济宁市鱼台县九年级数学第一学期期末复习检测模拟试题含解析_第3页
2022年山东省济宁市鱼台县九年级数学第一学期期末复习检测模拟试题含解析_第4页
2022年山东省济宁市鱼台县九年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.无法判断2.二次函数y=+2的顶点是()A.(1,2) B.(1,−2) C.(−1,2) D.(−1,−2)3.如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为40万元,2017年交易额为48.4万元,设2015年至2017年“双十一”交易额的年平均增长率为,则根据题意可列方程为()A. B.C. D.4.如图,在矩形中,,对角线相交于点,垂直平分于点,则的长为()A.4 B. C.5 D.5.已知x1,x2是一元二次方程x2+(2m+1)x+m2﹣1=0的两不相等的实数根,且,则m的值是()A.或3 B.﹣3 C. D.6.下列各点中,在反比例函数图象上的是()A.(3,1) B.(-3,1) C.(3,) D.(,3)7.若均为锐角,且,则().A. B.C. D.8.如图,BD是⊙O的直径,圆周角∠A=30,则∠CBD的度数是()A.30 B.45 C.60 D.809.在同一平面直角坐标系中,反比例函数y(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A. B.C. D.10.如果5x=6y,那么下列结论正确的是()A. B. C. D.11.如图,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则∠A的度数为()A.60° B.70° C.50° D.45°12.已知△ABC与△DEF相似且对应周长的比为4:9,则△ABC与△DEF的面积比为A.2:3 B.16:81C.9:4 D.4:9二、填空题(每题4分,共24分)13.2018年我国新能源汽车保有量居世界前列,2016年和2018年我国新能源汽车保有量分别为51.7万辆和261万辆.设我国2016至2018年新能源汽车保有量年平均增长率为,根据题意,可列方程为______.14.若正六边形的边长为2,则此正六边形的边心距为______.15.如图,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以点A为圆心,AB长为半径作弧交AC于D,分别以B、D为圆心,以大于BD长为半径作弧,两弧交于点E,射线AE与BC于F,过点F作FG⊥AC于G,则FG的长为______.16.如图,AB为半圆的直径,点D在半圆弧上,过点D作AB的平行线与过点A半圆的切线交于点C,点E在AB上,若DE垂直平分BC,则=______.17.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的侧面面积为_____cm2(结果保留π).18.如图,已知等边的边长为,,分别为,上的两个动点,且,连接,交于点,则的最小值_______.三、解答题(共78分)19.(8分)如图,大圆的弦AB、AC分别切小圆于点M、N.(1)求证:AB=AC;(2)若AB=8,求圆环的面积.20.(8分)某商店将成本为每件60元的某商品标价100元出售.(1)为了促销,该商品经过两次降低后每件售价为81元,若两次降价的百分率相同,求每次降价的百分率;(2)经调查,该商品每降价2元,每月可多售出10件,若该商品按原标价出售,每月可销售100件,那么当销售价为多少元时,可以使该商品的月利润最大?最大的月利润是多少?21.(8分)已知四边形ABCD的四个顶点都在⊙O上,对角线AC和BD交于点E.(1)若∠BAD和∠BCD的度数之比为1:2,求∠BCD的度数;(2)若AB=3,AD=5,∠BAD=60°,点C为劣弧BD的中点,求弦AC的长;(3)若⊙O的半径为1,AC+BD=3,且AC⊥BD.求线段OE的取值范围.22.(10分)为了测量山坡上的电线杆的高度,数学兴趣小组带上测角器和皮尺来到山脚下,他们在处测得信号塔顶端的仰角是,信号塔底端点的仰角为,沿水平地面向前走100米到处,测得信号塔顶端的仰角是,求信号塔的高度.(结果保留整数)23.(10分)如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D.连接AD,BD.求四边形ABCD的面积.24.(10分)已知在平面直角坐标系中位置如图所示.(1)画出绕点按顺时针方向旋转后的;(2)求点旋转到点所经过的路线长(结果保留).25.(12分)如图,平行四边形ABCD的顶点A在y轴上,点B、C在x轴上;OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB,BC=6;(1)写出点D的坐标;(2)若点E为x轴上一点,且S△AOE=,①求点E的坐标;②判断△AOE与△AOD是否相似并说明理由;(3)若点M是坐标系内一点,在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.26.在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1).从A、D、E、F四点中任意取一点,以所取的这一点及B、C为顶点三角形,则所画三角形是等腰三角形的概率是;(2).从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表求解).

参考答案一、选择题(每题4分,共48分)1、B【分析】根据判别式即可求出答案.【详解】解:由题意可知:,

∴,

故选:B.【点睛】本题考查的是一元二次方程根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.2、C【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=+2的顶点坐标.【详解】解:∵二次函数y=+2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.3、C【分析】由2015年至2017年“双十一”交易额的年平均增长率为x,根据2015年及2017年该网店“双十一”全天交易额,即可得出关于x的一元二次方程,从而得出结论.【详解】解:由2015年至2017年“双十一”交易额的年平均增长率为x,根据题意得:.故选C.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列一元二次方程是解题的关键.4、B【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=;故选:B.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.5、C【分析】先利用判别式的意义得到m>-,再根据根与系数的关系的x1+x2=-(2m+1),x1x2=m2-1,则(x1+x2)2-x1x2-17=0,所以(2m+1)2-(m2-1)-17=0,然后解关于m的方程,最后确定满足条件的m的值.【详解】解:根据题意得△=(2m+1)2﹣4(m2﹣1)>0,解得m>﹣,根据根与系数的关系的x1+x2=﹣(2m+1),x1x2=m2﹣1,∵,∴(x1+x2)2﹣x1x2﹣17=0,∴(2m+1)2﹣(m2﹣1)﹣17=0,整理得3m2+4m﹣15=0,解得m1=,m2=﹣3,∵m>﹣,∴m的值为.故选:C.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.也考查了根的判别式.6、A【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3.【详解】解:A、∵3×1=3,∴此点在反比例函数的图象上,故A正确;

B、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B错误;C、∵,∴此点不在反比例函数的图象上,故C错误;D、∵,∴此点不在反比例函数的图象上,故D错误;故选A.7、D【解析】根据三角函数的特殊值解答即可.【详解】解:∵∠B,∠A均为锐角,且sinA=,cosB=,

∴∠A=30°,∠B=60°.

故选D.【点睛】本题考查特殊角的三角函数值.8、C【解析】由BD为⊙O的直径,可证∠BCD=90°,又由圆周角定理知,∠D=∠A=30°,即可求∠CBD.【详解】解:如图,连接CD,∵BD为⊙O的直径,∴∠BCD=90°,∴∠D=∠A=30°,∴∠CBD=90°-∠D=60°.故选C.【点睛】本题利用了直径所对的圆周角是直角和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、D【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的右侧,则a,b异号,即b<1.所以反比例函数y的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的左侧,则a,b同号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.10、A【解析】试题解析:A,可以得出:故选A.11、A【分析】根据圆内接四边形的性质,构建方程解决问题即可.【详解】设∠BAD=x,则∠BOD=2x,∵∠BCD=∠BOD=2x,∠BAD+∠BCD=180°,∴3x=180°,∴x=60°,∴∠BAD=60°.故选:A.【点睛】本题考查圆周角定理,圆内接四边形的性质等知识,解题的关键是学会利用参数构建方程解决问题.12、B【解析】直接根据相似三角形周长的比等于相似比,面积比等于相似比的平方解答.【详解】解:∵△ABC与△DEF相似且对应周长的比为4:9,∴△ABC与△DEF的相似比为4:9,∴△ABC与△DEF的面积比为16:81.故选B【点睛】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比,面积的比等于相似比的平方.二、填空题(每题4分,共24分)13、【分析】根据增长率的特点即可列出一元二次方程.【详解】设我国2016至2018年新能源汽车保有量年平均增长率为,根据题意,可列方程为故答案为:.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程.14、.【分析】连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.【详解】连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.15、.【分析】过点F作FH⊥AB于点H,证四边形AGFH是正方形,设AG=x,表示出CG,再证△CFG∽△CBA,根据相似比求出x即可.【详解】如图过点F作FH⊥AB于点H,由作图知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四边形AGFH是正方形,设AG=x,则AH=FH=GF=x,∵tan∠C=,∴AC==,则CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案为:.【点睛】本题是对几何知识的综合考查,熟练掌握三角函数及相似知识是解决本题的关键.16、【分析】连接CE,过点B作BH⊥CD交CD的延长线于点H,可证四边形ACHB是矩形,可得AC=BH,AB=CH,由垂直平分线的性质可得BE=CE,CD=BD,可证CE=BE=CD=DB,通过证明Rt△ACE≌Rt△HBD,可得AE=DH,通过证明△ACD∽△DHB,可得AC2=AE•BE,由勾股定理可得BE2﹣AE2=AC2,可得关于BE,AE的方程,即可求解.【详解】解:连接CE,过点B作BH⊥CD交CD的延长线于点H,∵AC是半圆的切线∴AC⊥AB,∵CD∥AB,∴AC⊥CD,且BH⊥CD,AC⊥AB,∴四边形ACHB是矩形,∴AC=BH,AB=CH,∵DE垂直平分BC,∴BE=CE,CD=BD,且DE⊥BC,∴∠BED=∠CED,∵AB∥CD,∴∠BED=∠CDE=∠CED,∴CE=CD,∴CE=BE=CD=DB,∵AC=BH,CE=BD,∴Rt△ACE≌Rt△HBD(HL)∴AE=DH,∵CE2﹣AE2=AC2,∴BE2﹣AE2=AC2,∵AB是直径,∴∠ADB=90°,∴∠ADC+∠BDH=90°,且∠ADC+∠CAD=90°,∴∠CAD=∠BDH,且∠ACD=∠BHD,∴△ACD∽△DHB,∴,∴AC2=AE•BE,∴BE2﹣AE2=AE•BE,∴BE=AE,∴故答案为:.【点睛】本题考察垂直平分线的性质、矩形的性质和相似三角形,解题关键是连接CE,过点B作BH⊥CD交CD的延长线于点H,证明出四边形ACHB是矩形.17、3π【详解】.故答案为:.18、【分析】根据题意利用相似三角形判定≌,并求出OC的值即有的最小值从而求解.【详解】解:如图∵∴≌∴∴点的路径是一段弧(以点为圆心的圆上)∴∴,∵∴∴所以的最小值【点睛】本题结合相似三角形相关性质考查最值问题,利用等边三角形以及勾股定理相关等进行分析求解.三、解答题(共78分)19、(1)证明见解析;(2)S圆环=16π【解析】试题分析:(1)连结OM、ON、OA由切线长定理可得AM=AN,由垂径定理可得AM=BM,AN=NC,从而可得AB=AC.(2)由垂径定理可得AM=BM=4,由勾股定理得OA2-OM2=AM2=16,代入圆环的面积公式求解即可.(1)证明:连结OM、ON、OA∵AB、AC分别切小圆于点M、N.∴AM=AN,OM⊥AB,ON⊥AC,∴AM=BM,AN=NC,∴AB=AC(2)解:∵弦AB切与小圆⊙O相切于点M∴OM⊥AB∴AM=BM=4∴在Rt△AOM中,OA2-OM2=AM2=16∴S圆环=πOA2-πOM2=πAM2=16π20、(1)10%;(2)当定价为90元时,w最大为4500元.【分析】(1)设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是100(1﹣x),第二次后的价格是100(1﹣x)2,据此即可列方程求解;(2)销售定价为每件m元,每月利润为y元,列出二者之间的函数关系式利用配方法求最值即可.【详解】解:(1)根据题意得:100(1﹣x)2=81,解得:x1=0.1,x2=1.9,经检验x2=1.9不符合题意,∴x=0.1=10%,答:每次降价百分率为10%;(2)设销售定价为每件m元,每月利润为y元,则y=(m﹣60)[100+5×(100﹣m)]=﹣5(m﹣90)2+4500,∵a=﹣5<0,∴当m=90元时,w最大为4500元.答:(1)下降率为10%;(2)当定价为90元时,w最大为4500元.【点睛】本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程.21、(1)120°;(2);(3)≤OE≤【分析】(1)利用圆内接四边形对角互补构建方程解决问题即可.(2)将△ACD绕点C逆时针旋转120°得△CBE,根据旋转的性质得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三点共线,解直角三角形求出即可;(3)由题知AC⊥BD,过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,判断出四边形OMEN是矩形,进而得出OE2=2﹣(AC2+BD2),设AC=m,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:(1)如图1中,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠A:∠C=1:2,∴设∠A=x,∠C=2x,则x+2x=180°,解得,x=60°,∴∠C=2x=120°.(2)如图2中,∵A、B、C、D四点共圆,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵点C为弧BD的中点,∴BC=CD,∠CAD=∠CAB=∠BAD=30°,将△ACD绕点C逆时针旋转120°得△CBE,如图2所示:则∠E=∠CAD=∠CAB=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=360°﹣(∠CAB+∠ACB+∠ABC)=360°﹣180°=180°,∴A、B、E三点共线,过C作CM⊥AE于M,∵AC=CE,∴AM=EM=AE=(AB+AD)=×(3+5)=4,在Rt△AMC中,AC=.(3)过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,∵OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,AC⊥BD,∴四边形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2)设AC=m,则BD=3﹣m,∵⊙O的半径为1,AC+BD=3,∴1≤m≤2,OE2=2﹣[(AC+BD)2﹣2AC×BD]=﹣m2+m﹣=﹣(m﹣)2+,∴≤OE2≤,∴≤OE≤.【点睛】本题主要考查的是圆和四边形的综合应用,掌握圆和四边形的基本性质结合题目条件分析题目隐藏条件是解题的关键.22、信号塔的高度约为100米.【分析】延长PQ交直线AB于点M,连接AQ,设PM的长为x米,先由三角函数得出方程求出PM,再由三角函数求出QM,得出PQ的长度即可.【详解】解:延长交直线于点,连接,如图所示:则,设的长为米,在中,,∴米,∴(米),在中,∵,∴,解得:,在中,∵,∴(米),∴(米);答:信号塔的高度约为100米.【点睛】本题考查解直角三角形的应用、三角函数;由三角函数得出方程是解决问题的关键,注意掌握当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.23、S四边形ADBC=49(cm2).【分析】根据直径所对的角是90°,判断出△ABC和△ABD是直角三角形,根据圆周角∠ACB的平分线交⊙O于D,判断出△ADB为等腰直角三角形,根据勾股定理求出AD、BD、AC的值,再根据S四边形ADBC=S△ABD+S△ABC进行计算即可.【详解】∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴,∴AD=BD,∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,则AD=BD=5,则S△ABD=AD•BD=×5×5=25(cm2),在直角△ABC中,AC==6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).【点睛】本题考查了圆周角定理、三角形的面积等,正确求出相关的数值是解题的关键.24、(1)见解析;(2)【分析】(1)根据画旋转图形的方法画出绕点按顺时针方向旋转后的即可;(2)由题意根据旋转的性质利用圆弧公式,即可求出点旋转到点所经过的路线长.【详解】解:(1)的作图如下,(2)由题意可得:AC=,所以.【点睛】本题考查坐标系中点的坐标和图形的旋转以及勾股定理及弧长公式的应用,掌握相关的基本概念是解题关键.25、(1)(6,4);(2)①点E坐标或;②△AOE与△AOD相似,理由见解析;(3)存在,F1(﹣3,0);F2(3,8);;【分析】(1)求出方程x2﹣7x+12=0的两个根,OA=4,OB=3,可求点A坐标,即可求点D坐标;(2)①设点E(x,0),由三角形面积公式可求解;②由两组对边对应成比例,且夹角相等的两个三角形相似,可证△AOE∽△DAO;(3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算.【详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论