2023届山东省济南市槐荫区九年级数学第一学期期末质量检测试题含解析_第1页
2023届山东省济南市槐荫区九年级数学第一学期期末质量检测试题含解析_第2页
2023届山东省济南市槐荫区九年级数学第一学期期末质量检测试题含解析_第3页
2023届山东省济南市槐荫区九年级数学第一学期期末质量检测试题含解析_第4页
2023届山东省济南市槐荫区九年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知,一次函数与反比例函数在同一直角坐标系中的图象可能()A. B.C. D.2.在Rt△ABC中,∠C=90°,sinA=,则cosB的值等于()A. B. C. D.3.如图,直线l1∥l2∥l3,两条直线AC和DF与l1,l2,l3分别相交于点A、B、C和点D、E、F,则下列比例式不正确的是()A. B. C. D.4.下列图形中,成中心对称图形的是()A. B. C. D.5.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A. B. C. D.6.如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于点A,B,已知点A的坐标为(-2,1),点B的纵坐标为-2,根据图象信息可得关于x的方程=kx+b的解为()A.-2,1 B.1,1 C.-2,-2 D.无法确定7.下列关系式中,属于二次函数的是(x是自变量)A.y=x2 B.y= C.y= D.y=ax2+bx+c8.如图,正比例函数与反比例函数的图象交于、两点,其中,则不等式的解集为()A. B.C.或 D.或9.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A. B.C. D.10.的相反数是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知两个数的差等于2,积等于15,则这两个数中较大的是.12.已知抛物线的对称轴是直线,其部分图象如图所示,下列说法中:①;②;③;④当时,,正确的是_____(填写序号).13.若a,b是一元二次方程的两根,则________.14.如图,是半圆的直径,四边形内接于圆,连接,,则_________度.15.已知A(-4,2),B(2,-4)是一次函数的图像和反比例函数图像的两个交点.则关于的方程的解是__________________.16.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…17.已知1是一元二次方程的一个根,则p=_______.18.如图,Rt△ABC中,∠C=90°,且AC=1,BC=2,则sin∠A=_____.三、解答题(共66分)19.(10分)平行四边形中,点为上一点,连接交对角线于点,点为上一点,于,且,点为的中点,连接;若.(1)求的度数;(2)求证:20.(6分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣1,0),且tan∠ACO=1.(1)求该反比例函数和一次函数的解析式;(1)求点B的坐标.21.(6分)学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.22.(8分)如图,分别是的边,上的点,,,,,求的长.23.(8分)如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且的面积为5,求点P的坐标.24.(8分)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:,,,)25.(10分)如图,在正方形中,为边的中点,点在边上,且,延长交的延长线于点.(1)求证:△∽△.(2)若,求的长.26.(10分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据反比例函数图象确定b的符号,结合已知条件求得a的符号,由a,b的符号确定一次函数图象所经过的象限.【详解】解:若反比例函数经过第一、三象限,则.所以.则一次函数的图象应该经过第一、二、三象限;若反比例函数经过第二、四象限,则a<1.所以b>1.则一次函数的图象应该经过第二、三、四象限.故选项A正确;故选A.【点睛】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.2、B【解析】在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=.故选B.点睛:本题考查了互余两角三角函数的关系.在直角三角形中,互为余角的两角的互余函数相等.3、D【解析】试题分析:根据平行线分线段成比例定理,即可进行判断.解:∵l1∥l2∥l3,∴,,,.∴选项A、B、C正确,D错误.故选D.点睛:本题是一道关于平行线分线段成比例的题目,掌握平行线分线段成比例的相关知识是解答本题的关键4、B【解析】根据中心对称图形的概念求解.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故答案选:B.【点睛】本题考查了中心对称图形,解题的关键是寻找对称中心,旋转180°后与原图重合.5、B【解析】分析:画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.详解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.6、A【分析】所求方程的解即为两个交点A、B的横坐标,由于点A的横坐标已知,故只需求出点B的横坐标即可,亦即求出反比例函数的解析式即可,由于点A坐标已知,故反比例函数的解析式可求,问题得解.【详解】解:把点A(﹣1,1)代入,得m=﹣1,∴反比例函数的解析式是,当y=﹣1时,x=1,∴B的坐标是(1,﹣1),∴方程=kx+b的解是x1=1,x1=﹣1.故选:A.【点睛】本题考查了求直线与双曲线的交点和待定系数法求反比例函数的解析式,属于常考题型,明确两个函数交点的横坐标是对应方程的解是关键.7、A【详解】A.y=x2,是二次函数,正确;B.y=,被开方数含自变量,不是二次函数,错误;C.y=,分母中含自变量,不是二次函数,错误;D.y=ax2+bx+c,a=0时,,不是二次函数,错误.故选A.考点:二次函数的定义.8、D【分析】由题意可求点B坐标,根据图象可求解.【详解】解:∵正比例函数y=x与反比例函数的图象交于A、B两点,其中A(2,2),

∴点B坐标为(-2,-2)

∴由图可知,当x>2或-2<x<0,正比例函数图象在反比例函数的图象的上方,即不等式的解集为x>2或-2<x<0

故选:D.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.9、C【分析】通过相似三角形△EFB∽△EDC的对应边成比例列出比例式,从而得到y与x之间函数关系式,从而推知该函数图象.【详解】根据题意知,BF=1﹣x,BE=y﹣1,∵AD//BC,∴△EFB∽△EDC,∴,即,∴y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选C.10、D【详解】考查相反数的概念及应用,只有符号不同的两个数,叫做互为相反数.的相反数是.故选D.二、填空题(每小题3分,共24分)11、5【分析】设这两个数中的大数为x,则小数为x﹣2,由题意建立方程求其解即可.【详解】解:设这两个数中的大数为x,则小数为x﹣2,由题意,得x(x﹣2)=15,解得:x1=5,x2=﹣3,∴这两个数中较大的数是5,故答案为5;考点:一元二次方程的应用.12、①③④.【解析】首先根据二次函数图象开口方向可得,根据图象与y轴交点可得,再根据二次函数的对称轴,结合a的取值可判定出b>0,根据a,b,c的正负即可判断出①的正误;把代入函数关系式,再根据对称性判断出②的正误;把中即可判断出③的正误;利用图象可以直接看出④的正误.【详解】解:根据图象可得:,对称轴:,故①正确;把代入函数关系式由抛物线的对称轴是直线,可得当故②错误;即:故③正确;由图形可以直接看出④正确.故答案为①③④.【点睛】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当时,抛物线向上开口;当时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即),对称轴在y轴左侧;当a与b异号时(即),对称轴在y轴右侧.(简称:左同右异);③常数项c决定抛物线与y轴交点,抛物线与y轴交于.13、【分析】将通分变形为,然后利用根与系数的关系即可求解.【详解】∵a、b是一元二次方程的两根∴,∴故答案为:.【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握,是解题的关键.14、1【分析】首先根据圆周角定理求得∠ADB的度数,从而求得∠BAD的度数,然后利用圆内接四边形的性质求得未知角即可.【详解】解:∵AB是半圆O的直径,AD=BD,

∴∠ADB=90°,∠DAB=45°,

∵四边形ABCD内接于圆O,

∴∠BCD=180°-45°=1°,

故答案为:1.【点睛】考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是根据圆周角定理得到三角形ABD是等腰直角三角形,难度不大.15、x1=-4,x1=1【分析】利用数形结合的思想解决问题即可.【详解】∵A(﹣4,1),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数y图象的两个交点,∴关于x的方程kx+b的解是x1=﹣4,x1=1.故答案为:x1=﹣4,x1=1.【点睛】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是熟练掌握基本知识,属于中考常考题型.16、(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.17、2【分析】根据一元二次方程的根即方程的解的定义,将代入方程中,即可得到关于的方程,解方程即可得到答案.【详解】解:∵1是一元二次方程的一个根∴∴故答案是:【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立.18、【解析】根据勾股定理先得出AB,再根据正弦的定义得出答案即可.【详解】解:∵∠C=90°,

∴AC2+BC2=AB2,

∵AC=1,BC=2,

∴AB=;

∴sinA=,

故答案为:.【点睛】本题考查了锐角三角函数的定义,掌握正弦、余弦、正切的定义是解题的关键.三、解答题(共66分)19、(1)30°(2)证明见解析【分析】(1)通过平行四边形的性质、中点的性质、平行线的性质去证明,可得,再根据求解即可;(2)延长FE至点N,使,连接AN,通过证明,可得,再根据特殊角的锐角三角函数值,即可得证.【详解】(1)∵四边形ABCD为平行四边形∵M为AD的中点即即;(2)延长FE至点N,使,连接AN,由(1)知,.【点睛】本题考查了平行四边形的综合问题,掌握平行四边形的性质、平行线的性质、全等三角形的性质以及判定定理、特殊三角函数值是解题的关键.20、(1)反比例函数的解析式为,一次函数的解析式为y=1x+4;(1)点B坐标为(﹣2,﹣1).【分析】(1)先过点A作AD⊥x轴,根据tan∠ACO=1,求得点A的坐标,进而根据待定系数法计算两个函数解析式;(1)先联立两个函数解析式,再通过解方程求得交点B的坐标即可.【详解】解:(1)过点A作AD⊥x轴,垂足为D.由A(n,6),C(﹣1,0)可得,OD=n,AD=6,CO=1∵tan∠ACO=1,∴=1,即,∴n=1,∴A(1,6).将A(1,6)代入反比例函数,得m=1×6=6,∴反比例函数的解析式为.将A(1,6),C(﹣1,0)代入一次函数y=kx+b,可得:,解得:,∴一次函数的解析式为y=1x+4;(1)由可得,,解得=1,=﹣2.∵当x=﹣2时,y=﹣1,∴点B坐标为(﹣2,﹣1).【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是关键.21、(1)30;(2)作图见解析;(3)240;(4).【解析】试题分析:(1)由D选项的人数及其百分比可得总人数;(2)总人数减去A、C、D选项的人数求得B的人数即可;(3)总人数乘以样本中B选项的比例可得;(4)画树状图列出所有等可能结果,根据概率公式求解可得.试题解析:解:(1)本次调查的学生人数为6÷20%=30;(2)B选项的人数为30﹣3﹣9﹣6=12,补全图形如下:(3)估计“了解”的学生约有600×=240名;(4)画树状图如下:由树状图可知,共有6种等可能结果,其中两人恰好是一男生一女生的有4种,∴被选中的两人恰好是一男生一女生的概率为=.点睛:本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、【分析】先求出AD的长,再根据平行线分线段成比例定理,即可求出AC.【详解】解:∵,,∴.∵,∴.∵∴.∴.【点睛】此题考查的是平行线分线段成比例定理,掌握利用平行线分线段成比例定理列出比例式是解决此题的关键.23、(1)(2)P的坐标为或【分析】(1)利用点A在上求a,进而代入反比例函数求k即可;(2)设,求得C点的坐标,则,然后根据三角形面积公式列出方程,解方程即可.【详解】(1)把点代入,得,∴把代入反比例函数,∴;∴反比例函数的表达式为;(2)∵一次函数的图象与x轴交于点C,∴,设,∴,∴,∴或,∴P的坐标为或.【点睛】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.24、(1);(2)51m【分析】(1)作于M,根据矩形的性质得到,,根据正切的定义求出AM;(2)根据正切的定义求出DM,结合图形计算,得到答案.【详解】解:(1)作于M,则四边形ABCM为矩形,,,在中,,则,答:AB与CD之间的距离;(2)在中,,则,,答:建筑物CD的高度约为51m.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.25、(1)详见解析;(2)1.【分析】(1)先根据正方形的性质、直角三角形的性质得出,再加上一组直角相等,根据相似三角形的判定定理即可得证;(2)先根据正方形的性质、中点的性质求出AE的长,再根据勾股定理求出BE的长,最后根据相似三角形的性质、线段的和差即可得.【详解】(1)∵四边形ABCD为正方形,且;(2)∵四边形ABCD为正方形,点E为AD的中点在中,由(1)知,,即故的长为1.【点睛】本题考查了正方形的性质、勾股定理、相似三角形的判定定理与性质等知识点,较难的是题(2),由题(1)的结论联系到利用相似三角形的性质是解题关键.26、(1)点D坐标为(5,);(2)OB=2;(2)k=12.【解析】分析:(1)如图1中,作DE⊥x轴于E,解直角三角形清楚DE,CE即可解决问题;(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论