版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列说法正确的是()A.垂直于半径的直线是圆的切线 B.经过三个点一定可以作圆C.圆的切线垂直于圆的半径 D.每个三角形都有一个内切圆2.如图,已知正方形ABCD,将对角线BD绕着点B逆时针旋转,使点D落在CB的延长线上的D′点处,那么sin∠AD′B的值是()A. B. C. D.3.若,则的值为()A. B. C. D.﹣4.如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为A.46° B.53° C.56° D.71°5.正十边形的外角和为()A.180° B.360° C.720° D.1440°6.若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A.45° B.60° C.72° D.90°7.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.8.有人预测2020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是().A.中国女排一定会夺冠 B.中国女排一定不会夺冠C.中国女排夺冠的可能性比较大 D.中国女排夺冠的可能性比较小9.如图在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC相似的条件是()A.∠AED=∠B B.∠ADE=∠C C. D.10.计算的结果是()A.-3 B.9 C.3 D.-9二、填空题(每小题3分,共24分)11.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同,则该商品每次降价的百分率为_____.12.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,若开口∠1=60°,半径为,则这个“吃豆小人”(阴影图形)的面积为_____.13.小刚要测量一旗杆的高度,他发现旗杆的影子恰好落在一栋楼上,如图,此时测得地面上的影长为8米,楼面上的影长为2米.同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则旗杆的高度为_______米.14.正八边形的每个外角的度数和是_____.15.如图,一次函数的图象与反比例函数的图象交于A(2,﹣4),B(m,2)两点.当x满足条件______________时,一次函数的值大于反比例函数值.16.如图,△OAB的顶点A的坐标为(3,),B的坐标为(4,0);把△OAB沿x轴向右平移得到△CDE,如果D的坐标为(6,),那么OE的长为_____.17.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线图象上的概率为__.18.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.三、解答题(共66分)19.(10分)已知关于的一元二次方程.(1)求证:对于任意实数,方程总有两个不相等的实数根;(2)若方程的一个根是1,求的值及方程的另一个根.20.(6分)反比例函数与一次函数的图象都过.(1)求点坐标;(2)求反比例函数解析式.21.(6分)四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)22.(8分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?23.(8分)用适当的方法解方程:(1)(2).24.(8分)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x的之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大;最大利润是多少.(注:销售利润=销售收入-购进成本)25.(10分)如图,在△ABC中,D为AC上一点,E为CB延长线上一点,且,DG∥AB,求证:DF=BG.26.(10分)如图所示,在中,,,,点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.连接,设运动时间为.(1)当为何值时,?(2)设的面积为,求与的函数关系式,并求出当为何值时,取得最大值?的最大值是多少?
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据与圆有关的基本概念依次分析各项即可判断.【详解】A.垂直于半径且经过切点的直线是圆的切线,注意要强调“经过切点”,故本选项错误;
B.经过不共线的三点一定可以作圆,注意要强调“不共线”,故本选项错误;C.圆的切线垂直于过切点的半径,注意强调“过切点”,故本选项错误;
D.每个三角形都有一个内切圆,本选项正确,故选D.【点睛】本题考查了有关圆的切线的判定与性质,解答本题的关键是注意与圆有关的基本概念中的一些重要字词,学生往往容易忽视,要重点强调.2、A【分析】设,根据正方形的性质可得,再根据旋转的性质可得的长,然后由勾股定理可得的长,从而根据正弦的定义即可得.【详解】设由正方形的性质得由旋转的性质得在中,则故选:A.【点睛】本题考查了正方形的性质、旋转的性质、正弦的定义等知识点,根据旋转的性质得出的长是解题关键.3、C【分析】将变形为﹣1,再代入计算即可求解.【详解】解:∵,∴=﹣1=﹣1=.故选:C.【点睛】考查了比例的性质,解题的关键是将变形为.4、C【解析】试题分析:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°.∵∠ADB和∠ACB都是弧AB对的圆周角,∴∠ADB=∠ACB=56°.故选C.5、B【分析】根据多边的外角和定理进行选择.【详解】解:因为任意多边形的外角和都等于360°,
所以正十边形的外角和等于360°,.
故选B.【点睛】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.6、B【分析】利用正多边形的边长与半径相等得到正多边形为正六边形,然后根据正多边形的中心角定义求解.【详解】解:因为正多边形的边长与半径相等,所以正多边形为正六边形,因此这个正多边形的中心角为60°.
故选B.【点睛】本题主要考查的是正多边形的中心角的概念,正确的理解正多边形的边长与半径相等得到正多边形为正六边形是解决问题的关键.7、C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【详解】解:A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项正确;
D、不是轴对称图形,故此选项错误.
故选C.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、C【分析】概率越接近1,事件发生的可能性越大,概率越接近0,则事件发生的可能性越小,根据概率的意义即可得出答案.【详解】∵中国女排夺冠的概率是80%,∴中国女排夺冠的可能性比较大故选C.【点睛】本题考查随机事件发生的可能性,解题的关键是掌握概率的意义.9、C【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、不能判定△ADE∽△ACB,故C选项正确;D、,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.10、C【解析】直接计算平方即可.【详解】故选C.【点睛】本题考查了二次根号的平方,比较简单.二、填空题(每小题3分,共24分)11、10%【解析】设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1-降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论.【详解】设该种商品每次降价的百分率为x%,依题意得:400×(1-x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.故答案为:10%【点睛】本题考查了一元二次方程的应用,解题的关键是根据数量关系得出关于x的一元二次方程.12、5π【解析】∵∠1=60°,∴图中扇形的圆心角为300°,又∵扇形的半径为:,∴S阴影=.故答案为.13、1【分析】直接利用已知构造三角形,利用同一时刻,实际物体与影长成比例进而得出答案.【详解】如图所示:由题意可得,DE=2米,BE=CD=8米,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴,解得:AB=4,故旗杆的高度AC为1米.故答案为:1.【点睛】此题主要考查了相似三角形的应用,正确构造三角形是解题关键.14、360°.【分析】根据题意利用正多边形的外角和等于360度,进行分析计算即可得出答案.【详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数和是360°.故答案为:360°.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.15、x<﹣4或0<x<2【分析】(1)根据一次函数y=-x+b的图象与反比例函数(a≠0)的图象相交于A(2,﹣4),B(m,2)两点,可以求得a=-8,m=-4,根据函数图象和点A、B的坐标可以得到当x为何值时,一次函数值大于反比例函数值.【详解】∵一次函数y=-x+b的图象与反比例函数的图象相交于A(2,-4)、B(m,2)两点,∴将x=2,y=-4代入得,a=-8;∴将x=m,y=2代入,得m=-4,∴点B(-4,2),∵点A(2,-4),点B(-4,2),∴由函数的图象可知,当x<﹣4或0<x<2时,一次函数值大于反比例函数值.故答案为:x<﹣4或0<x<2.【点睛】本题考查反比例函数和一次函数的交点问题,解题的关键是明确题意,利用数形结合的思想,找出所求问题需要的条件.16、7【分析】根据平移的性质得到AD=BE=6﹣3=3,由B的坐标为(4,0),得到OB=4,根据OE=OB+BE即可得答案.【详解】∵点A的坐标为(3,),点D的坐标为(6,),把△OAB沿x轴向右平移得到△CDE,∴AD=BE=6﹣3=3,∵B的坐标为(4,0),∴OB=4,∴OE=OB+BE=7,故答案为:7【点睛】本题考查图形平移的性质,平移不改变图形的形状和大小;图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等.17、【解析】根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案.【详解】画树状图得:
∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线图象上的只有(3,2),
∴点(a,b)在图象上的概率为.【点睛】本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.18、【解析】根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.【详解】∵点A坐标为(3,4),∴OA==5,∴cosα=,故答案为【点睛】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.三、解答题(共66分)19、(1)见解析;(2),【分析】(1)将方程转化为一般式,然后得出根的判别式,得出判别式为非负数得出答案;(2)将代入方程求出的值,然后根据解方程的方法得出另一个根.【详解】解:(1)∴对于任意实数,方程总有两个不相等的实数根;(2)当时,,∴【点睛】本题考查了解一元二次的方程以及判别式.20、(1)点的坐标为;(2)反比例函数解析式为.【分析】(1)把点A(m,2)代入一次函数y=2x-4求出m的值即可得出A点的坐标;(2)再把点A的坐标代入反比例函数求出k的值,即可解析式.【详解】解:(1)将点代入,得:,解得:,∴点的坐标为;(2)将点代入得:,∴反比例函数解析式为.【点睛】本题考查的是一次函数及反比例函数图象上点的坐标特点,解答此题的关键是熟知函数图象的交点坐标即为函数解析式组成的方程组的解.21、(1)①图形见解析②AP=BN,AP⊥BN(2)答案见解析.【分析】(1)①根据题意作出图形即可;②结论:AP=BN,AP⊥BN,只要证明△APO≌△BNO即可;(2)在RT△CMS中,求出SM,SC即可解决问题.【详解】解:(1)①补全图形如图1所示,②结论:AP=BN,AP⊥BN.理由:延长NB交AP于H,交OP于K.∵四边形ABCD是正方形,∴OA=OB,AO⊥BO,∴∠1+∠2=90°,∵四边形OPMN是正方形,∴OP=ON,∠PON=90°,∴∠2+∠3=90°,∴∠1=∠3,在△APO和△BNO中,∴△APO≌△BNO,∴AP=BN,∴∠4=∠5,在△OKN中,∠5+∠6=90°,∵∠7=∠6,∴∠4+∠7=90°,∴∠PHK=90°,∴AP⊥BN.(2)作OT⊥AB于T,MS⊥BC于S,由题意可证△APO≌△BNO,AP=BN,∠OPA=ONB.由题意可知AT=TB=1,由∠APO=30°,可得PT=,BN=AP=+1,可得∠POT=∠MNS=60°.由∠POT=∠MNS=60°,OP=MN,可证,△OTP≌△NSM,∴PT=MS=,∴CN=BN﹣BC=﹣1,∴SC=SN﹣CN=2﹣,在RT△MSC中,CM2=MS2+SC2,∴CM=,可求.【点睛】本题考查四边形综合题、正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活应用这些知识解决问题,属于中考常考题型.22、(1);(2)当销售单价定为74元或72元时,每周销售利润最大,最大利润是5280元;【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;
(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;【详解】解:(1)依题意有:;
(2)依题意有:
W=(80-50-x)(10x+160)===-10(x-7)2+5290,
因为x为偶数,
所以当销售单价定为80-6=74元或80-8=72时,每周销售利润最大,最大利润是5280元;【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.23、(1);;(2)=,=1.【分析】(1)用公式法求解;(2)用因式分解法求解.【详解】解:(1)a=2,b=3,c=-5,△=32-1×2×(-5)=19>0,所以x1===1,x1===;(2)[(x+3)+(1-2x)][(x+3)-(1-2x)]=0(-x+1)(3x+2)=0所以3x+2=0或-x+1=0,解得x1=,x2=1.【点睛】本题考查了一元二次方程的解法,根据方程的特点选择适当的方法是解决此题的关键.24、(1)y=-100x2+600x+5500(0≤x≤11);(2)每件商品销售价是10.5元时,商店每天销售这种小商品的利润最大,最大利润是6400元.【分析】(1)根据等量关系“利润=(13.5-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44713-2024节地生态安葬服务指南
- 水粉烟花课件教学课件
- 出游应急预案
- 旅游业安全规范解析
- 2024年大型并网风力发电机组发电机项目资金需求报告代可行性研究报告
- 物业小区危险源识别
- 吉林省2024七年级数学上册第1章有理数1.7有理数的减法课件新版华东师大版
- 彩色的雨教案反思
- 建筑业薪酬政策
- 林业安防施工合同
- 国开(浙江)2024年《个人理财》形考作业1-4答案
- 《创意改善生活》课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 2024-2025学年 浙教版七年级数学上册期中(第1-4章)培优试卷
- 个人简历模板(5套完整版)
- CHT 1027-2012 数字正射影像图质量检验技术规程(正式版)
- 文艺复兴经典名著选读智慧树知到期末考试答案章节答案2024年北京大学
- 《中医药健康知识讲座》课件
- 劳务派遣劳务外包服务方案(技术方案)
- 给4S店精品销售的几点建议
- 非营利组织机构营销个案分析——以广州青年志愿者协会为例
- 五年级数学替换法解决问题——等量代换(经典实用)
评论
0/150
提交评论