版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图所示,抛物线的顶点为,与轴的交点在点和之间,以下结论:①;②;③;④.其中正确的是()A.①② B.③④ C.②③ D.①③2.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形3.如图,空心圆柱的俯视图是()A. B. C. D.4.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是(
)A.(1,0) B.(,) C.(1,) D.(-1,)5.若函数y=(3﹣m)﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.96.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:X﹣1013y﹣33下列结论:(1)abc<0;(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0;(4)抛物线与坐标轴有两个交点;(5)x=3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的个数为()A.5个 B.4个 C.3个 D.2个7.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元 C.支出80元 D.收入80元8.方程x2﹣4x+5=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根9.若,,则的值为()A. B. C. D.10.若二次函数y=-x2+px+q的图像经过A(,n)、B(0,y1)、C(,n)、D(,y2)、E(,y3),则y1、y2、y3的大小关系是()A.y3<y2<y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y1二、填空题(每小题3分,共24分)11.已知二次函数y=-x2+2x+5,当x________时,y随x的增大而增大12.点(2,5)在反比例函数的图象上,那么k=_____.13.用一张半径为14cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是________cm1.14.一组数据3,2,1,4,的极差为5,则为______.15.在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验和发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是____________.16.如图,四边形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB于F,若BC=2CD,AE=2,则线段BF=______.17.已知一次函数y=ax+b与反比例函数y=的图象相交于A(4,2),B(-2,m)两点,则一次函数的表达式为____________.18.在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是_____.三、解答题(共66分)19.(10分)阅读下面材料,完成(1),(2)两题数学课上,老师出示了这样一道题:如图1,在中,,,点为上一点,且满足,为上一点,,延长交于,求的值.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现与相等.”小伟:“通过构造全等三角形,经过进一步推理,就可以求出的值.”……老师:“把原题条件中的‘’,改为‘’其他条件不变(如图2),也可以求出的值.(1)在图1中,①求证:;②求出的值;(2)如图2,若,直接写出的值(用含的代数式表示).20.(6分)已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC边中点.点M为线段BC上的一个动点(不与点C,点D重合),连接AM,将线段AM绕点M顺时针旋转90°,得到线段ME,连接EC.(1)如图1,若点M在线段BD上.①依据题意补全图1;②求∠MCE的度数.(2)如图2,若点M在线段CD上,请你补全图形后,直接用等式表示线段AC、CE、CM之间的数量关系.21.(6分)在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.(1)如图1,取点M(1,0),则点M到直线l:y=x﹣1的距离为多少?(2)如图2,点P是反比例函数y=在第一象限上的一个点,过点P分别作PM⊥x轴,作PN⊥y轴,记P到直线MN的距离为d0,问是否存在点P,使d0=?若存在,求出点P的坐标,若不存在,请说明理由.(3)如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m的解析式.22.(8分)如图,在社会实践活动中,某数学兴趣小组想测量在楼房CD顶上广告牌DE的高度,他们先在点A处测得广告牌顶端E的仰角为60°,底端D的仰角为30°,然后沿AC方向前行20m,到达B点,在B处测得D的仰角为45°(C,D,E三点在同一直线上).请你根据他们的测量数据计算这广告牌DE的高度(结果保留小数点后一位,参考数据:,).23.(8分)综合与实践—探究正方形旋转中的数学问题问题情境:已知正方形中,点在边上,且.将正方形绕点顺时针旋转得到正方形(点,,,分别是点,,,的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,当点落在正方形的对角线上时,设线段与交于点.求证:四边形是矩形;(2)“善学”小组提出问题:如图2,当线段经过点时,猜想线段与满足的数量关系,并说明理由;深入探究:(3)请从下面,两题中任选一题作答.我选择题.A.在图2中连接和,请直接写出的值.B.“好问”小组提出问题:如图3,在正方形绕点顺时针旋转的过程中,设直线交线段于点.连接,并过点作于点.请在图3中补全图形,并直接写出的值.24.(8分)如图,广场上空有一个气球,地面上点间的距离.在点分别测得气球的仰角为,,求气球离地面的高度.(精确到个位)(参考值:,,,)25.(10分)如图,等边△ABC中,点D在AC上(CD<AC),连接BD.操作:以A为圆心,AD长为半径画弧,交BD于点E,连接AE.(1)请补全图形,探究∠BAE、∠CBD之间的数量关系,并证明你的结论;(2)把BD绕点D顺时针旋转60°,交AE于点F,若EF=mAF,求的值(用含m的式子表示).26.(10分)已知关于的一元二次方程.(1)若方程有实数根,求的取值范围;(2)若方程的两个实数根的倒数的平方和等于14,求的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据二次函数的图象可逐项判断求解即可.【详解】解:抛物线与x轴有两个交点,
∴△>0,
∴b2−4ac>0,故①错误;
由于对称轴为x=−1,
∴x=−3与x=1关于x=−1对称,
∵x=−3,y<0,
∴x=1时,y=a+b+c<0,故②错误;
∵对称轴为x=−=−1,
∴2a−b=0,故③正确;
∵顶点为B(−1,3),
∴y=a−b+c=3,
∴y=a−2a+c=3,
即c−a=3,故④正确,
故选B.【点睛】本题考查抛物线的图象与性质,解题的关键是熟练运用抛物线的图象与性质,本题属于中等题型.2、B【分析】根据轴对称图形的概念和中心对称图形的概念进行分析判断.【详解】解:选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确.选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B.【点睛】本题考查轴对称图形的概念和中心对称图形的概念,正确理解概念是解题关键.3、D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是三个水平边较短的矩形,中间矩形的左右两边是虚线,故选:D.【点睛】本题考查了三视图,俯视图是指从上往下看得到的图形。注意:看的见的线画实线,看不见的线画虚线.4、C【分析】根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.【详解】∵A(-1,0),∴OA=1,∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB’,∴平移的距离为1个单位长度,∴则点B的对应点B’的坐标是(1,).故答案为:C.【点睛】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.5、B【分析】根据二次函数的定义来求解,注意二次项的系数与次数.【详解】根据二次函数的定义,可知
m2-7=2
,且
3-m≠0
,解得
m=-3
,所以选择B.故答案为B【点睛】本题考查了二次函数的定义,注意二次项的系数不能为0.6、C【解析】先根据表格中的数据大体画出抛物线的图象,进一步即可判断a、b、c的符号,进而可判断(1);由点(0,3)和(3,3)在抛物线上可求出抛物线的对称轴,然后结合抛物线的开口方向并利用二次函数的性质即可判断(2);由(2)的结论可知:当x=4和x=﹣1时对应的函数值相同,进而可判断(3);根据画出的抛物线的图象即可判断(4);由表中的数据可知:当x=3时,二次函数y=ax2+bx+c=3,进一步即可判断(5),从而可得答案.【详解】解:(1)画出抛物线的草图如图所示:则易得:a<0,b>0,c>0,∴abc<0,故(1)正确;(2)由表格可知:点(0,3)和(3,3)在抛物线上,且此两点关于抛物线的对称轴对称,∴抛物线的对称轴为直线x=,因为a<0,所以,当x>时,y的值随x值的增大而减小,故(2)错误;(3)∵抛物线的对称轴为直线x=,∴当x=4和x=﹣1时对应的函数值相同,∵当x=-1时,y<0,∴当x=4时,y<0,即16a+4b+c<0,故(3)正确;(4)由图象可知,抛物线与x轴有两个交点,与y轴有一个交点,故(4)错误;(5)由表中的数据可知:当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b﹣1)x+c=0的一个根,故(5)正确;综上,结论正确的共有3个,故选:C.【点睛】本题考查了抛物线的图象和性质以及抛物线与一元二次方程的关系,根据表格中的数据大体画出函数图象、熟练掌握二次函数的性质是解题的关键.7、C【解析】试题分析:“+”表示收入,“—”表示支出,则—80元表示支出80元.考点:相反意义的量8、D【详解】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.9、D【分析】先利用平方差公式得到=(a+b)(a-b),再把,整体代入即可.【详解】解:=(a+b)(a-b)==.故答案为D.【点睛】本题考查了平方差公式,把a+b和a-b看成一个整体是解题的关键.10、A【分析】利用A点与C点为抛物线上的对称点得到对称轴为直线x=2,然后根据点B、D、E离对称轴的远近求解.【详解】∵二次函数y=-x2+px+q的图像经过A(,n)、C(,n),
∴抛物线开口向下,对称轴为直线,∵点D(,y2)的横坐标:,离对称轴距离为,点E(,y3)的横坐标:,离对称轴距离为,∴B(0,y1)离对称轴最近,点E离对称轴最远,∴y3<y2<y1.
故选:A.【点睛】本题考查了二次函数函数的性质,二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式,根据抛物线上的对称点坐标得到对称轴是解题的关键.二、填空题(每小题3分,共24分)11、x<1【分析】把二次函数解析式化为顶点式,可求得其开口方向及对称轴,利用二次函数的增减性可求得答案.【详解】解:∵y=-x2+2x+5=-(x-1)2+6,
∴抛物线开口向下,对称轴为x=1,
∴当x<1时,y随x的增大而增大,
故答案为:<1.【点睛】此题考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).12、1【分析】直接把点(2,5)代入反比例函数求出k的值即可.【详解】∵点(2,5)在反比例函数的图象上,∴5=,解得k=1.故答案为:1.【点睛】此题考查求反比例函数的解析式,利用待定系数法求函数的解析式.13、110∏C㎡【解析】试题分析:∵圆锥的底面周长为10π,∴扇形纸片的面积=×10π×14=140πcm1.故答案为140π.考点:圆锥的计算.14、-1或1【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=1;当x是最小值,则4-x=5,所以x=-1;故答案为-1或1.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.15、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,=0.2,
解得,a=1.
故估计a大约有1个.
故答案为:1.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.16、【分析】连接,延长BA,CD交于点,根据∠BAD=∠BCD=90°可得点A、B、C、D四点共圆,根据圆周角定理可得,根据DE⊥AC可证明△AED∽△BCD,可得,利用勾股定理可求出AD的长,由∠ABC=45°可得△ABG为等腰直角三角形,进而可得△ADG是等腰直角三角形,即可求出AG、DG的长,根据BC=2CD可求出CD、BC、AB的长,根据,可证明△AED∽△FAD,根据相似三角形的性质可求出AF的长,即可求出BF的长.【详解】连接,延长BA,CD交于点,∵,∴四点共圆,∴,∵,∴,∴△AED∽△BCD,∴,∴,∴AD==,∵∴是等腰直角三角形,∵BC=2CD,∴∴CD=DG,∵,∴是等腰直角三角形,∴,∴,∵,,∴△AED∽△FAD,∴,∴∴.【点睛】本题考查圆周角定理、勾股定理及相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.17、y=x-1【详解】解:把(4,1)代入,得k=8,∴反比例函数的表达式为,把(-1,m)代入,得m=-4,∴B点的坐标为(-1,-4),把(4,1),(-1,-4)分别代入y=ax+b,得解得,∴直线的表达式为y=x-1.故答案为:y=x-1.18、m>﹣【详解】∵反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,∴1+2m>0,故m的取值范围是:m>﹣,故答案为:m>﹣.【点睛】本题考查了反比例函数的图象与性质,对于反比例函数,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.三、解答题(共66分)19、(1)①证明见解析;②;(2)【分析】(1)①根据三角形内角和定理可得,然后根据三角形外角的性质可得,从而证出结论;②过点作交的延长线于点,过点作于点,过点作交于点,利用ASA证出,可得,再利用AAS证出,可得,利用平行线分线段成比例定理即可证出结论;(2)根据三角形内角和定理可得,然后根据三角形外角的性质可得,过点作交的延长线于点,过点作于点,过点作交于点,利用ASA证出,可得,再利用相似三角形的判定证出,可得,利用平行线分线段成比例定理即可证出结论;【详解】证明:(1)①∵,∴∵,∴,∴②如图,过点作交的延长线于点,过点作于点,过点作交于点,∵,,∴,∴,∵∴,∴∵点是中点,∴∵,∴,∴∵∴,∴∵∴(2)∵,∴∵,∴,∴过点作交的延长线于点,过点作于点,过点作交于点,∵,,∴,∴,∵∴,∴∵,∴∵,∴,∴∴∵∴,∴∵∴【点睛】此题考查的是相似三角形与全等三角形的综合大题,掌握构造全等三角形、相似三角形的方法、全等三角形的判定及性质和相似三角形的判定及性质是解决此题的关键.20、(1)①见解析;②∠MCE=∠F=45°;(2)【分析】(1)①依据题意补全图即可;②过点M作BC边的垂线交CA延长线于点F,利用同角的余角相等,得到∠FMA=∠CME,再通过等腰三角形的判定得到FM=MC,再通过判断,得到∠MCE的度数.(2)通过证明,得到AF=EC,将转化为,再在Rt△FMC中,利用边角关系求出FC=,即可得到.【详解】(1)①补全图1:②解:过点M作BC边的垂线交CA延长线于点F∵FM⊥BC∴∠FMC=90°∴∠FMA+∠AMC=90°∵将线段AM绕点M顺时针旋转90°,得到线段ME∴∠AME=90°,AM=ME∴∠CME+∠AMC=90°∴∠FMA=∠CME∵∠BAC=90°,AB=AC,∴∠FCM=45°∴∠F=∠FCM=45°∴FM=MC在△FMA和△CME中∴∴∠MCE=∠F=45°(2)解:过点M作BC边的垂线交CA延长线于点F∵FM⊥BC∴∠FMC=90°∴∠FME+∠EMC=90°∵将线段AM绕点M顺时针旋转90°,得到线段ME∴∠AME=90°,AM=ME∴∠FME+∠AMF=90°∴∠EMC=∠AMF∵∠BAC=90°,AB=AC,∴∠FCM=45°∴∠MFC=90°-∠FCM=45°∴FM=MC在△FMA和△CME中∴∴AF=EC∴∵∠FCM=45°,∠FMC=90°∴FC=∴综上所述,【点睛】本题是旋转图形考查,掌握旋转前后不变的量是解答此题的关键,涉及到的知识点相似的判定及性质、等腰三角形的性质等.21、(1);(2)点P(,2)或(2,);(3)y=﹣2x+1【分析】(1)如图1,设直线l:y=x﹣1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,先求出点A,点B坐标,可得OA=2,OB=1,AM=1,由勾股定理可求AB长,由锐角三角函数可求解;(2)设点P(a,),用参数a表示MN的长,由面积关系可求a的值,即可求点P坐标;(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,设点A(a,a2﹣4a),点B(b,b2﹣4b),通过证明△AOC∽△BOD,可得ab﹣4(a+b)+17=0,由根与系数关系可求a+b=k+4,ab=﹣m,可得y=kx+1﹣4k=k(x﹣4)+1,可得直线y=k(x﹣4)+1过定点N(4,1),则当PN⊥直线y=kx+m时,点P到直线y=kx+m的距离最大,由待定系数法可求直线PN的解析式,可求k,m的值,即可求解.【详解】解:(1)如图1,设直线l:y=x﹣1与x轴,y轴的交点为点A,点B,过点M作ME⊥AB,∵直线l:y=x﹣1与x轴,y轴的交点为点A,点B,∴点A(2,0),点B(0,﹣1),且点M(1,0),∴AO=2,BO=1,AM=OM=1,∴AB===,∵tan∠OAB=tan∠MAE=,∴,∴ME=,∴点M到直线l:y=x﹣1的距离为;(2)设点P(a,),(a>0)∴OM=a,ON=,∴MN==,∵PM⊥x轴,PN⊥y轴,∠MON=10°,∴四边形PMON是矩形,∴S△PMN=S矩形PMON=2,∴×MN×d0=2,∴×=4,∴a4﹣10a2+16=0,∴a1=2,a2=﹣2(舍去),a3=2,a4=﹣2(舍去),∴点P(,2)或(2,),(3)如图3,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D,设点A(a,a2﹣4a),点B(b,b2﹣4b),∵∠AOB=10°,∴∠AOC+∠BOD=10°,且∠AOC+∠CAO=10°,∴∠BOD=∠CAO,且∠ACO=∠BDO,∴△AOC∽△BOD,∴,∴∴ab﹣4(a+b)+17=0,∵直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B,∴a,b是方程kx+m=x2﹣4x的两根,∴a+b=k+4,ab=﹣m,∴﹣m﹣4(k+4)+17=0,∴m=1﹣4k,∴y=kx+1﹣4k=k(x﹣4)+1,∴直线y=k(x﹣4)+1过定点N(4,1),∴当PN⊥直线y=kx+m时,点P到直线y=kx+m的距离最大,设直线PN的解析式为y=cx+d,∴解得∴直线PN的解析式为y=x﹣1,∴k=﹣2,∴m=1﹣4×(﹣2)=1,∴直线y=kx+m的解析式为y=﹣2x+1.【点睛】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,根与系数关系,相似三角形的判定和性质,锐角三角函数等知识,利用参数列出方程是本题的关键.22、广告牌的高度为54.6米.【分析】由题可知:,,,先得到CD=CB,在三角形ACD中,利用正切列出关于CD的等式并解出,从而求出BC的值,加上AB的值得到AC的值,在三角形ACE中利用正切得到CE的长度,最后用CE-CD即为所求.【详解】解:∵又,在中,即答:广告牌的高度为54.6米.【点睛】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的关键.23、(1)见解析;(2);(3)A.,B..【分析】(1)根据旋转性质证得,从而证得绪论;(2)连接、,过点作,根据旋转性质结合三角形三线合一的性质证得,再证得四边形是矩形,从而求得结论;(3)A.设,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应边成比例再结合勾股定理即可求得答案;B.作交直线于点,根据旋转性质利用AAS证得,证得OP是线段的中垂线,根据旋转性质结合两边对应成比例且夹角相等证得,利用相似三角形对应高的比等于相似比再结合勾股定理即可求得答案;【详解】(1)由题意得:,,由旋转性质得:,∵四边形是矩形(2)连接、,过点作于N,由旋转得:,∵,,∵ON⊥D,∠=∠,∴四边形是矩形,∴,∴;(3)A.如图,连接,,,由旋转的性质得:∠BO=∠,BO=O,,∴,∴,,,设,则,B.如图,过点作AG∥交直线于点G,过点O作交直线于点,连接OP,∵AG∥,,四边形是正方形,由旋转可知:,,,,,,,,,,,,在和中,,,又∵,,,,,,,又∵,,,,,设,则,,在中,由勾股定理可得:,.【点睛】本题考查四边形综合题、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、、勾股定理、矩形的性质、线段的垂直平分线的性质和判定等知识,解题的关键是准确寻找全等三角形解决问题.24、18.【分析】作AD⊥l,在Rt△ACD和Rt△ABD中,将BD,CD分别用AD表示出来,再根据BC=BD-CD列出关于AD的等式求解即可.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北师大版四年级上册数学第三单元 乘法 测试卷及完整答案
- 设备制造监造服务协议
- 设计版权转让合同
- 诚信承诺保证书字数左右
- 详解劳务分包合同及价格
- 语文奥赛三年级提升逻辑思维的挑战
- 货车司机聘用合同格式
- 质量承诺保证书格式
- 购房贷款合同范本版
- 购销合同延期申请
- 药物分析计算题合集
- 翻身拍背护理课件
- 火灾调查专业技能.全国比武单项科目解析
- 人卫慕课《走进肺功能》试题答案
- 重庆市巴南区2022-2023学年六年级上学期期末数学试题
- 人音版初中音乐 九年级上册 中考一轮复习课件
- 主题班会:班风校风主题班会课课件
- 中建污水支管逆作井安全专项施工方案
- 肝硬化食管胃底静脉曲张破裂出血的诊治
- 初中体育《篮球单元计划及体前变向换手运球》教学设计
- 万物之理-爱因斯坦之梦智慧树知到课后章节答案2023年下中国海洋大学
评论
0/150
提交评论