【2022】大学物理1(上)知识点总结_第1页
【2022】大学物理1(上)知识点总结_第2页
【2022】大学物理1(上)知识点总结_第3页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一 质点运动学知识点:参考系立坐标系。位置矢量与运动方程位置矢量(位矢:是从坐标原点引向质点所在的有向线段,用矢量r表示。位矢用于确定点在空间的位置。位ˆ与时间t 的函数关系:rr(t))j称为运动方程。矢:是质点在时△t 内的位置改变,即位移:rr(t t)r(t)轨道方程:质点运动轨迹的曲线方程。速度与加速度 v r平均速度定义为单位时间内的位移,即: t v dr速度,是质点位矢对时间的变化率: dts平均速率定义为单位时间内的路程:v tds速率,是质点路程对时间的变化率: dt a dv加速度,是质点速度对时间的变化率: dt法向加速度与切向加速度adv

ˆaˆ加速度 dt n ta法向加速度na

v2,方向沿半径指向曲率中心(圆心,反映速度方向的变化。dv切向加速度 t

dt,方向沿轨道切线,反映速度大小的变化。在圆周运动中,角量定义如下:角速度ddt角加速度ddtv2 dv而vRan

R2,aR

dt相对运动对于两个相互作平动的参考系,有 r pk

pk

rkk

,vpkvvkk',apkaakk'重点:物理量,明确它们的相对性、瞬时性和矢量性。能灵活运用计算问题。理解伽利略坐标、速度变换,能分析与平动有关的相对运动问题。难点:法向和切向加速度相对运动问题功的定义

三、功和能知识点:质点在力F的作用下有微小的位移(或写为d,则力作的功定义为力和位移的标积即FFdrcos FFdrcosdA

Fdscos对质点在力作用下的有限运动,力作的功为 AbFa在直角坐标系中,此功可写为AbFdxbFdybFdza x a y a z应当注意:功的计算不仅与参考系的选择有关,一般还与物体的运动路径有关。只有保守力(重力、弹性力、万有引力)的功才只与始末位置有关,而与路径形状无关。动能定理质点动能定理:合外力对质点作的功等于质点动能的增量。11A mv2 mv2112 2 0质点系动能定理:系统外力的功与内力的功之和等于系统总动能的增量。A A E E外 内 K K0应当注意,动能定理中的功只能在惯性系中计算。势能重力势能: 零势面的选择视方便而定。弹性势能:规定弹簧无形变时的势

E kx 2,1P 21

能为零,它总取正值。万有引力势能:c由零势点的选择而定。E P

Mm c,r功能原理:A A外 非保

(EK

E)(EP K

E )P0即:外力的功与非保守内力的功之和等于系统机械能的增量。机械能守恒定律外力的功与非保守内力的功之和等于零时,系统的机械能保持不变。即当A A外 非保

0时,E EK P

常量重点:熟练掌握功的定义及变力作功的计算方法。理解保守力作功的特点及势能的概念,会计算重力势能、弹性势能和万有引力势能。掌握动能定理及功能原理,并能用它们分析、解决质点在平面内运动时的力学问题。掌握机械能守恒的条件及运用守恒定律分析、求解综和问题的思想和方法。难点:计算变力的功。理解一对内力的功。机械能守恒的条件及运用守恒定律分析、求解综和问题的思想和方法。三动量角动量守恒知识点:1.动量定理合外力的冲量等于质点(或质点系)动量的增量。其数学表达式为t t对质点

2 Fdt P P2 1t1 t

对质点系在直角坐标系中有

2dtPt 21

P,1

P Piit2FtP Pt x x2 x11t2FtP Pt y y2 y11t2FtP Pt z11.动量守恒定律

z2 z1当一个质点一质点系的

当F外

0时,

P mvi i v

系所受合外力为零时,这常矢量总动量矢量就保持不变。即 i iv当F , F v当F ,

常量在直角坐标

xi

mv

系中的分量式为yFy

时,

i

常量mvz i izi1.角动量定理质点的角动量:对某一固定点有LLrprmv角动量定理:质点所受的合外力矩等于它的角动量对时间的变化率dL M M rF

dt i ii若对某一固定点而言,质点受的合外力矩为零,则质点的角动量保持不变。即 重点:

当 M时, LL0

常矢量面内运动时的力学问题。方法,能分析系统在平面内运动的力学问题。掌握质点的角动量的物理意义,能用角动量定理计算问题。掌握角动量守恒定律的条件以及运用该定律求解问题的基本方法。难点:计算变力的冲量。用动量定理系统动量守恒分析、解决质点在平面内运动时的力学问题。。四刚体力学基础知识点:描述刚体定轴转动的物理量及运动学公式。0

t10

t t20 20

)0刚体定轴转动定律:.M M I角量与线关系: r,vr,a

r,an

r2刚体的转动惯量:Imr2(离散质点)iiIr(连续分布质点)平行轴定理 IIml2c刚体顶轴转动的功和能:力矩的功:W2112)Ek

J223):W

2Md1J2 J21 2 2 2 111刚体的机械能守恒定律:若只有保守力做功时,则:E E 恒量P k定轴转动刚体的角动量定理L I定轴转动刚体的角动量dL刚体角动量定理 M

dI

t2tJ

Jdt dt

t 2 2 1 11角动量守恒定律刚体所受的外力对某固定轴的合外力矩为零时,则刚体对此轴的总角动量保持不变。即当M外

时,Ii i

常量定轴转动刚体的机械能守恒只有保守力的力矩作功时,刚体的转动动能与转动势能之和为常量。12I2

mgh常量c式中hc是刚体的质心到零势面的距离。6 定轴转动的动力学问题解题基本步骤首先分析各物体所受力和力矩情况,然后根据已知条件和所求物理量判断应选用的规律,最后列方程求解.1).求刚体转动某瞬间的角加速度,一般应用转动定律求解。如质点和刚体组成的系统,对质点列牛顿运动方程,对刚体列转动定律方程,再列角量和线量的关联方程,联立求解.2).刚体与质点的碰撞、打击问题,在有心力场作用下绕力心转动的质点问题,考虑用角动量守恒定律3).在刚体所受的合外力矩不等于零时,比如木杆摆动,受重力矩作用,一般应用刚体的转动动能定理或机械能守恒定律求解。另外:实际问题中常常有多个复杂过程,要分成几个阶段进行分析,分别列出方程,进行求解.质点运动与刚体定轴转动描述的对照质点运动与刚体定轴转动描述的对照质点的平动刚体的定轴转动速度vddt角速度ddt加速度a dvdt角加速度ddt力F质量m力矩转动惯量MJr2dm动量Pmv角动量LJ质点运动规律与刚体定轴转动的规律对照质点平

刚体的定轴转

F

转动定律角动量定理

MtFdtmvmv

t0t0守恒律

MdtLL0t0定律F

mv

M J

恒量i i i i i 力的功

W a

Fdr

力矩的功 W

Md0动能 Ek

mv2/2

转动动能 Ek

J 2/2动能定理1 1

动能定理1 1W mv2 mv2

W 2 2 0

2 2 0重力势能 E p机械能守恒只有保守力作功时

重力势能 E mghp C机械能守恒只有保守力作功时

EEk

恒量

E Ek

恒量式。掌握刚体定轴转动定理,并能用它求解定轴转动刚体和质点联动问题。题中正确的应用机械能守恒定律。量守恒定律。难点:正确运用刚体定轴转动定理求解问题。对含有定轴转动刚体在内的系统正确应用角动量守恒定律和机械能守恒定律。五机械振动知识点:1、简谐运动微分方程:

d2xdt2

2x0 ,弹簧振子F=-kx,

,单摆kmglxAkmglA,相位(t),初相位,角频率。

。周期T,频率。T、可由初始条件确定:x 2v2002A= ,x 2v2002x0由旋转矢量法确定初相:初始条件:t=01)由x A0v 0

A A cos cos1 0得2)由

x 00

0

/2,3 /2v 00v

si0/2得3)

xA0v 0

Aco co 1得4)

00x00v00

00 /2,/2vsin 00得3/2简谐振动的相位:ωt+φ:t+φ→(x,v)0→2π内变化,质点无相同的运动状态;相位差2nπ(n为整数)质点运动状态全同;3)初相位(φ或[0→2π])4)简谐振动的速度:V=-Aωsin(ωt+φ)加速度:a=A2)简谐振动的能量:1 1E sin2)k 2E kx2

21 kA2cos2(t)1p 1 2E=E+E= kA2,K P 2作简谐运动的系统机械能守恒4)两个简谐振动的合成(向同频的合成后仍为谐振动:两个同向同频率的简谐振动的合成:X=Acos(),X=Acos()1 1 1 2 2 2合振动X=X1+X2=Acos()其中A=

AA21A222AAcos1221

Asin1 Acos

Asin2 2。Acos1 1 2 2相位差: =2k时,A=A+A,极大2 1 1 2若 A A1 2

=(2k+1)时,A=2 11

A+A 极小1 2A A,2 1 2两个相互垂直同频率的简谐振动的合成:x=Acos(t ),y=Acos(t )1 1 2 2其轨迹方程为:xxA12yA222xycos()21AA()2112如果02 1其合振动的轨迹为顺时针的椭圆2) 22 1其合振动的轨迹为逆时针的椭圆整数比,合成运动的轨迹为李萨如图形。同向异频的合成:拍现,拍频 。2 1重点:1、熟记振动图像;2、掌握各个物理量的计算公式;3、掌握、熟记初相的确定;4、理解、掌握振动的合成。难点:1、用旋转矢量法确定初相;2、两种振动的合成及合成后A和φ的确定。六 机械波知识点1、机械波的几个概念:1)机械波产生条件:波源;2)弹性介质机械振动在弹性介质中的传播形成波,波是运动状态的传播,介质的质点并不随波传播.波的分类:1)描述波的几个物理量:1)波长λ:周期T频率ν:单位时间内波动所传播的完整波的数目;4)波速μ:某一相位在单位时间内所 1T u T u4)波速μ:某一相位在单位时间内所5)波线:沿波传播方向的有向线段。它代表波的传播方向。波面:振动相位相同的所构成的曲面,又称波阵面。2、平面简谐波的波函数y=Acos[(ty=Acos[(t

x+μxux+μxuy=Acos[2πν(t-x/μ)+φ;y=Acos[2(tx)+].T 相距为x的两点振动的相位差:2x波的能量、波的动能与势能:1 xdE dE dVA22sin2(t )k p 2 u、波的能量:xdEdE dE dVA22sin2(t )k P u结论:1)在波动传播的媒质中,任一体积元的动能、势能、总机械能均随x、t作周期性变化,且变化是同相位的.2)任一体积元都在不断地接收和放出能量,即不断地传播能量. 任一体积元机械能不守恒.波动是能量传递的一种方式.、能量密度:单位介质中的波动能量。dw w A22sin2(t )dw dv u1平均能量密度:w A2224、能流和能流密度:能流:单位时间内垂直通过介质中某一面积的能量。P=wuS (u:波速,S)1p

A22uS2能流密度(波强:垂直通过单位面积的平均能流。p 1I A22uS 2惠更斯原理 波的衍射和干涉1、惠更斯原理:便是新的波前。2、波的衍射:波在传播过程中,遇到障碍物时其传播方向发生改变,绕过障碍物的边缘继续传播。3、波的干涉:1)波的叠加原理:1波的独立作用原理——几列波相遇后仍保持它们原有的特性(频率、波长、振幅、传播方向)不变,互不干扰地各自独立传播。2.波的叠加原理——在相遇区域内任一点的振动为各列波单独存在时在该点所引起的振动位移的矢量和。2).干涉条件:同振动方向,同振动频率,相位差恒定。相干波源:若有两个波源,它们的振动方向相同、频率相同、周相差恒定,称这两波源为相干波源。3)干涉条纹出现的条件: P设两相干波源S1S2设两相干波源S1S2y t r Acos2

1T r1 1 1 t r 1 ry Acos2 2 22 2 T 2在相遇区域内P点的振动为两同方向同频率振动的合成。合振幅为A2A2A22AAcos1 2 1 2S1S2相位差:

r1

1波程差: rr2 1、干涉相长与干涉相消:干涉相长(加强)的条件:cos 1即:

r2k,k即波程差为:r

k, k 2 1 2 1A=A1+A2, 2π的整数倍或波程差为波长的整数倍时,干涉相长加强。干涉相消大的条件:cos1r(2k, k即波程差为(2k1), k 2 1 2A|AA1

|, 当相位差是π的奇数倍或波程差为半波长的奇数倍时,干涉相消。其他值,A1

A AAA2 1 25、驻波方程1)驻波:是两列同振幅、沿相反方向传播的相干波的干涉。波节间距:2波节——振幅为零(静止不动)3)驻波方程:设两列沿同一直线相向传播的同振幅相干波,其初相为零,即y

tx入射波:

cos2 1 T

y

tx反射波:

cos2 yy1

2 T y2A

t

xA

t

x

2Acos

xcostcos2

T

cos2

T T 驻波方程:

y2Acosxcostx①.波节位置:2Acos0xx

(2k1)2

x(2k1)4

,(k②.相邻波节距离x(2k1)x

[2(k

4k1] (2 kkk 4 4x③.波腹位置: cos1x

k,xk2

,(k)④.相邻波腹距离:x

xk

(k1)2

k 2 2波节与波腹之间的距离为/4,除波节、波腹外,其它各点振幅02A。驻波的波形、能量都不能传播,驻波不是波,是一种特殊的振动。的突变,称存在半波损失(反之则不存在。理论和实验证明:当波由波密介质入射到波疏介质时,反射点为波腹,反射波与入射波在反射点同相;当波由波疏介质入射到波密介质时,反射点为波节,反射波与入射波在反射点反相。即反的现象称为半波损失。重点:1、波动图像;2、平面简谐波的波函数的三种形式;3、干涉、衍射的条件及振动加强、减弱的条件;4、驻波方程即波腹、波节的位置。难点:1、平面简谐波的三种简谐波方程;2、振动加强减弱的条件;3、波腹、波节的位置。七气体动理论知识点:1、基本概念物态参量(压强,温度,体积,理想气体,系统和外界,宏观,微观平衡态在不受外界影响的条件下, 一个系统的宏观性质不随时间改变状态.2、.基本定律、定理、公式MPV=

RT P=nkT,n是分子数密度,n=N/V,R=8.31J·mol-1·K-1,k=RN0

1.38×10-23J·K-1、热力学第令定律:如果系统ABCAB、理想气体微观模型的内容:ab、除碰撞外,分子间相互作用可忽略。c3、理想气体压强公式:vx

v vy z

0,v2v2x y

v2z

13v21 1 2P1

nmv2,又3k3

2mv2,故P

3k3nm,故P

v231 3温度公式k

2mv2

=2kT3、能量均分定理、自由度:分子 自由度平动t 转动r 振动v 总自由度i

3 0 0 3刚性 3 2 0 5非刚性 3 2 2 7刚性 3 3 0 6非刚性 3 3 6 12、1kT。2、理想气体的内能:E=Mi 2

RT 。分子的平均能量ikT2dN速率分布函数:f(v)=Ndv

,0

fvdv1(归一化条件)三种统计速率:2kTm最概然速率:v 2kTmp8kTπm8RTπM平均速率:8kTπm8RTπM

1.412RTMRTMRT2RTMRTMRTMv23kTv23kTm

1.733RTMRT3RTMRTM2πd2PZ 2nπd2v, kT2πd2P重点:1、理想气体物态方程;理想气体的压强公式和理想气体平均平动动能与温度的关系式;能量均分定理和理想气体内能的计算;三种统计速率:最槪然速率、平均速率、方均根速率。难点理想气体的压强公式和理想气体平均平动动能与温度的关系式;能量均分定理和理想气体内能的计算;三种统计速率:最槪然速率、平均速率、方均根速率。八 热力学基础知识点:1、准静态过程、准静态过程:从一个平衡态到另一平衡态所经过的每一中间状态均可近似当作平衡p图上可用一条曲线来表示3W

pdV,气体所作的功等于P---V图上过程曲线下的面积,系统所作的功不仅与系统的始末状态有关,而且与路径有关,故功是过程量。4、热量:系统与外界之间由于温差而传递的能量,热量也是过程量。2、热力学第一定律:(包括分子内原子间的振动势能)的总和,是温度的单值函数内能是状态量 E=E(T) iRT2理想气体内能变化与CV,m的关系dECV,mdT、热力学第一定律:系统从外界吸收的热量,一部分使系统的内能增加,另一部分使.Q=E2-E1+对于无限小过程 dQ=dE+dW (注意:各物理量符号的规定)3、四个重要过程4、循环热机:顺时针方向进行的循环。 热机效率

1 2W QW 12W致冷机:逆时针方向进行的循环。 致冷系数e2W

Q12 QQ21 2程和两个绝热过程组成。卡诺热机效率

1T2T21卡诺致冷机致冷系数e

T2TT21 2过程过程等体等压等温绝热过程特点过程方程dV0pCTdp0dT0dQ 0VT CPVVTCP1C12方程C热一律QdQ dECT)vdQdEpdvdQpTpdv, 21C T)21RTlnV2dEpdv003V1WP2V)RTln1V2VCV,m 2(TT)10PV PV1内能变化EE C2121T)1 12 21CV,miR2CP,mi2R205、热力学第二定律1)热力学第二定律的两种表达式:开尔文表述:不可能制造出这样一种循环工作的热机,它只使单一热源冷却来做功,而不放出热量给其他物体,或者说不使外界发生任何变化.克劳修斯表述不可能把热量从低温物体自动传到高温物体而不引起外界的变化.热力学第二定律的实质:自然界一切与热现象有关的实际宏观过程都是不可逆的.2)可逆与不可逆过程:在系统状态变化过程中如果逆过程能重复正过程的每一状, 而不引起其他变, 样的过程叫做可逆过.反之称为不可逆过.卡诺定理:a、在相同高温热源和低温热源之间工作的任意工作物质的可逆机都具有相同的效率.b、工作在相同的高温热源和低温热源之间的一切不可逆机的效率都不可能大于可逆机的效率.6、熵熵增加原理A改变到状态S

BdQ

dQ或dsB A AT T3)熵增原理:孤立系统的熵永不减少.孤立系统中的可逆过程,其熵不变;孤立系统中的不可逆过程,其熵要增加.重点:1、准静态过程功的计算;2、热力学第一定律以及式中各物理量的符号规定;3、四个(等体、等压、等温、绝热)过程的过程特点、过程方程、过程曲线、内能增量、所作的功以及热量变化。4、卡诺循环原理和几种效率公式;5、热力学第二定律的两种表达、卡诺定理和熵增加原理的条件和内容。难点:1、热力学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论