版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“且”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件2.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.3.已知,则的大小关系为()A. B. C. D.4.已知复数满足,则的最大值为()A. B. C. D.65.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2 B.3 C.4 D.56.设复数满足,则在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在三棱锥中,,且分别是棱,的中点,下面四个结论:①;②平面;③三棱锥的体积的最大值为;④与一定不垂直.其中所有正确命题的序号是()A.①②③ B.②③④ C.①④ D.①②④8.设函数的定义域为,命题:,的否定是()A., B.,C., D.,9.已知函数,若对任意,都有成立,则实数的取值范围是()A. B. C. D.10.已知双曲线的焦距为,过左焦点作斜率为1的直线交双曲线的右支于点,若线段的中点在圆上,则该双曲线的离心率为()A. B. C. D.11.在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为()A. B. C. D.12.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.四边形中,,,,,则的最小值是______.14.已知实数满约束条件,则的最大值为___________.15.圆关于直线的对称圆的方程为_____.16.已知函数,若在定义域内恒有,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.每台设备一个月中使用的易耗品的件数678型号A30300频数型号B203010型号C04515将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?18.(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)已知点,直线与曲线交于、两点,求.19.(12分)在直角坐标系中,曲线的标准方程为.以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)若点在曲线上,点在直线上,求的最小值.20.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=1.(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M(2,0),若直线l与曲线C相交于P、Q两点,求的值.21.(12分)选修4—5;不等式选讲.已知函数.(1)若的解集非空,求实数的取值范围;(2)若正数满足,为(1)中m可取到的最大值,求证:.22.(10分)在平面直角坐标系中,椭圆:的右焦点为(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点.⑴求椭圆的标准方程;⑵若时,,求实数;⑶试问的值是否与的大小无关,并证明你的结论.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】
画出“,,,所表示的平面区域,即可进行判断.【题目详解】如图,“且”表示的区域是如图所示的正方形,记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,显然是的真子集,所以答案是充分非必要条件,故选:.【答案点睛】本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.2.B【答案解析】
根据斜二测画法的基本原理,将平面直观图还原为原几何图形,可得,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【题目详解】根据“斜二测画法”可得,,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,它的表面积为.故选:【答案点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.3.A【答案解析】
根据指数函数的单调性,可得,再利用对数函数的单调性,将与对比,即可求出结论.【题目详解】由题知,,则.故选:A.【答案点睛】本题考查利用函数性质比较大小,注意与特殊数的对比,属于基础题..4.B【答案解析】
设,,利用复数几何意义计算.【题目详解】设,由已知,,所以点在单位圆上,而,表示点到的距离,故.故选:B.【答案点睛】本题考查求复数模的最大值,其实本题可以利用不等式来解决.5.D【答案解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.6.C【答案解析】
化简得到,得到答案.【题目详解】,故,对应点在第三象限.故选:.【答案点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.7.D【答案解析】
①通过证明平面,证得;②通过证明,证得平面;③求得三棱锥体积的最大值,由此判断③的正确性;④利用反证法证得与一定不垂直.【题目详解】设的中点为,连接,则,,又,所以平面,所以,故①正确;因为,所以平面,故②正确;当平面与平面垂直时,最大,最大值为,故③错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故④正确.故选:D【答案点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.8.D【答案解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【题目详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【答案点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.9.D【答案解析】
先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【题目详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【答案点睛】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.10.C【答案解析】
设线段的中点为,判断出点的位置,结合双曲线的定义,求得双曲线的离心率.【题目详解】设线段的中点为,由于直线的斜率是,而圆,所以.由于是线段的中点,所以,而,根据双曲线的定义可知,即,即.故选:C【答案点睛】本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.11.A【答案解析】
由已知可得到直线的倾斜角为,有,再利用即可解决.【题目详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.【答案点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.12.D【答案解析】
设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【题目详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【答案点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
在中利用正弦定理得出,进而可知,当时,取最小值,进而计算出结果.【题目详解】,如图,在中,由正弦定理可得,即,故当时,取到最小值为.故答案为:.【答案点睛】本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属于中档题.14.8【答案解析】
画出可行域和目标函数,根据平移计算得到答案.【题目详解】根据约束条件,画出可行域,图中阴影部分为可行域.又目标函数表示直线在轴上的截距,由图可知当经过点时截距最大,故的最大值为8.故答案为:.【答案点睛】本题考查了线性规划问题,画出图像是解题的关键.15.【答案解析】
求出圆心关于直线的对称点,即可得解.【题目详解】的圆心为,关于对称点设为,则有:,解得,所以对称后的圆心为,故所求圆的方程为.故答案为:【答案点睛】此题考查求圆关于直线的对称圆方程,关键在于准确求出圆心关于直线的对称点坐标.16.【答案解析】
根据指数函数与对数函数图象可将原题转化为恒成立问题,凑而可知的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定的取值范围.【题目详解】由指数函数与对数函数图象可知:,恒成立可转化为恒成立,即恒成立,,即是夹在函数与的图象之间,的图象在过原点且与两函数相切的两条切线之间.设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;当时,,又,满足题意;综上所述:实数的取值范围为.【答案点睛】本题考查恒成立问题的求解,重点考查了导数几何意义应用中的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)应该购买21件易耗品【答案解析】
(1)由统计表中数据可得型号分别为在一个月使用易耗品的件数为6,7,8时的概率,设该单位三台设备一个月中使用易耗品的件数总数为X,则,利用独立事件概率公式进而求解即可;(2)由题可得X所有可能的取值为,即可求得对应的概率,再分别讨论该单位在购买设备时应同时购买20件易耗品和21件易耗品时总费用的可能取值及期望,即可分析求解.【题目详解】(1)由题中的表格可知A型号的设备一个月使用易耗品的件数为6和7的频率均为;B型号的设备一个月使用易耗品的件数为6,7,8的频率分别为;C型号的设备一个月使用易耗品的件数为7和8的频率分别为;设该单位一个月中三台设备使用易耗品的件数分别为,则,,,设该单位三台设备一个月中使用易耗品的件数总数为X,则而,,故,即该单位一个月中三台设备使用的易耗品总数超过21件的概率为.(2)以题意知,X所有可能的取值为;;;由(1)知,,若该单位在购买设备的同时购买了20件易耗品,设该单位一个月中购买易耗品所需的总费用为元,则的所有可能取值为,;;;;;若该单位在肋买设备的同时购买了21件易耗品,设该单位一个月中购买易耗品所需的总费用为元,则的所有可能取值为,;;;;,所以该单位在购买设备时应该购买21件易耗品【答案点睛】本题考查独立事件的概率,考查离散型随机变量的分布列和期望,考查数据处理能力.18.(1).(2)【答案解析】
(1)根据极坐标与直角坐标互化公式,以及消去参数,即可求解;(2)设两点对应的参数分别为,,将直线的参数方程代入曲线方程,结合根与系数的关系,即可求解.【题目详解】(1)对于曲线的极坐标方程为,可得,又由,可得,即,所以曲线的普通方程为.由直线的参数方程为(为参数),消去参数可得,即直线的方程为,即.(2)设两点对应的参数分别为,,将直线的参数方程(为参数)代入曲线中,可得.化简得:,则.所以.【答案点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化,以及直线的参数方程的应用,着重考查了推理与运算能力,属于基础题.19.(1)(2)【答案解析】
(1)直接利用极坐标公式计算得到答案(2)设,,根据三角函数的有界性得到答案.【题目详解】(1)因为,所以,因为所以直线的直角坐标方程为.(2)由题意可设,则点到直线的距离.因为,所以,因为,故的最小值为.【答案点睛】本题考查了极坐标方程,参数方程,意在考查学生的计算能力和转化能力.20.(1)l:,C方程为;(2)=【答案解析】
(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.
(2)利用一元二次方程根和系数关系式的应用求出结果.【题目详解】(1)曲线C的参数方程为(m为参数),两式相加得到,进一步转换为.直线l的极坐标方程为ρcos(θ+)=1,则转换为直角坐标方程为.(2)将直线的方程转换为参数方程为(t为参数),代入得到(t1和t2为P、Q对应的参数),所以,,所以=.【答案点睛】本题考查参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论