![中考数学试卷含答案初三九年级数学试题_第1页](http://file4.renrendoc.com/view/aad9b5ee8a9bd4315419761cabcaafbc/aad9b5ee8a9bd4315419761cabcaafbc1.gif)
![中考数学试卷含答案初三九年级数学试题_第2页](http://file4.renrendoc.com/view/aad9b5ee8a9bd4315419761cabcaafbc/aad9b5ee8a9bd4315419761cabcaafbc2.gif)
![中考数学试卷含答案初三九年级数学试题_第3页](http://file4.renrendoc.com/view/aad9b5ee8a9bd4315419761cabcaafbc/aad9b5ee8a9bd4315419761cabcaafbc3.gif)
![中考数学试卷含答案初三九年级数学试题_第4页](http://file4.renrendoc.com/view/aad9b5ee8a9bd4315419761cabcaafbc/aad9b5ee8a9bd4315419761cabcaafbc4.gif)
![中考数学试卷含答案初三九年级数学试题_第5页](http://file4.renrendoc.com/view/aad9b5ee8a9bd4315419761cabcaafbc/aad9b5ee8a9bd4315419761cabcaafbc5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学试卷一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+93.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣34.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.85.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.C.B.D.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.27.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:559.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.C.B.D.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为克.12.一个多边形的每一个外角都是18°,这个多边形的边数为.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为cm.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有(只填序号)三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.17.(7分)先化简,再求值:÷(﹣),其中a=+2.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球12足球排球乒乓球羽毛球报名人数占总人数的百分比84a10b24%(1)该班学生的总人数为人;(2)由表中的数据可知:a=,b=;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.【分析】根据绝对值的定义回答即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值得定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+9【分析】根据幂的乘方、同底数幂的乘法、平方差公式和完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、结果是a6,故本选项不符合题意;B、结果是4x2﹣1,故本选项不符合题意;C、结果是a10,故本选项不符合题意;D、结果是a2﹣6a+9,故本选项符合题意;故选:D.【点评】本题考查了幂的乘方、同底数幂的乘法、平方差公式和完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.4.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为3)2+(5﹣3)2]=2.8,=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.5.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.C.B.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.2【分析】求出不等式组的解集,即可求出正最大整数解;【解答】解:,由①得到:2x+6﹣4≥0,∴x≥﹣1,由②得到:x+1>3x﹣3,∴x<2,∴﹣1≤x<2,∴最大整数解是1,故选:C.【点评】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.7.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.【点评】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:55【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.9.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.C.B.D.【分析】根据题意列出方程组,根据一元二次方程解的情况判断..【解答】解:ax﹣2a=﹣,则x﹣2=﹣,整理得,x2﹣2x+1=0,△=0,∴一次函数y=ax﹣2a与反比例函数y=﹣只有一个公共点,故选:B.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的图象和性质,函数图象的交点的求法是解题的关键.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【分析】根据题目中的新规定和二次函数的性质、不等式的性质,可以判断各个选项中的结论是否正确,本题得以解决.【解答】解:∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣1+,x2=﹣1﹣,故选项B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+)2+>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选:D.【点评】本题考查抛物线与x轴的交点、非负数的性质、解一元一次方程、解一元一次不等式,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为3.25×105克.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:某物体质量为325000克,用科学记数法表示为3.25×105克.故答案为:3.25×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.一个多边形的每一个外角都是18°,这个多边形的边数为二十.【分析】根据多边形的外角和为360°,求出多边形的边数即可.【解答】解:设正多边形的边数为n,由题意得,n×18°=360°,解得:n=20.故答案为:二十.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为52°.【分析】依据∠E=30°,AC∥EF,即可得到∠AGH=∠E=30°,再根据∠1是△AGH的外角,即可得出∠1=∠A+∠AGH=52°.【解答】解:如图,∵∠E=30°,AC∥EF,∴∠AGH=∠E=30°,又∵∠1是△AGH的外角,∴∠1=∠A+∠AGH=22°+30°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为5cm.【分析】根据垂径定理求得AC=4cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=2cm,AB=8cm,∵CD⊥AB,∴OD⊥AB,∴AC=AB=4cm,∴设半径为r,则OD=r﹣2,根据题意得:r2=(r﹣2)2+42,解得:r=5.∴这个玉片的外圆半径长为5cm.故答案为:5.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有①③⑤(只填序号)【分析】①正确,根据两角对应相等的两个三角形相似即可判断;②错误.根据斜边不相等即可判断;③正确.求出点C坐标即可判断;④错误.求出点B1即可判断;⑤正确.首先证明四边形DEGF是矩形,推出DF=EG,DE=FG,设DF=EG=x,构建二次函数,利用二次函数的性质即可判断;【解答】解:如图,作CH⊥AB于H.∵DF⊥AB于F,EG⊥AB于G,∴∠AFD=∠DCE=∠EGB=90°,∵DE∥AB,∴∠CDE=∠DAF,∠CED=∠EBG,∴△AFD∽△DCE∽△EGB;故①正确;当AD=CD时,∵DE>CD,∴DE>AD,∴△AFD与△DCE不全等,故②错误,在Rt△ACB中,∵AC=4,BC=3,∴AB=5,CH=∴AH===2.4,=3.2,∴C(3.2,2.4),故③正确,将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1,设B1为(m,n),则有=3.2,m=1.4,=2.4,n=4.8,∴B1(1.4,4.8),故④错误;∵DF⊥AB于F,EG⊥AB于G,∴DF∥EG,∵DE∥AB,∴四边形DEGF是平行四边形,∵∠DFG=90°,∴四边形DEGF是矩形,∴DF=EG,DE=FG,设DF=EG=x,则AFx,BG=x,∴DE=FG=5﹣x﹣x=5﹣x,∵S矩形DEGF=x(5﹣x)=﹣x2+5x,∵﹣<0,∴S的最大值==3,故⑤正确,综上所述,正确的有:①③⑤,故答案为①③⑤.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、矩形的判定和性质、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考压轴题.三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.【分析】根据零指数幂的意义、负整数指数幂的意义以及特殊角锐角三角函数的值即可求出答案.【解答】解:原式=2+1﹣(﹣3)2﹣4×=2+1﹣9﹣2=﹣8【点评】本题考查实数的运算,解题的关键是熟练运用有关运算性质,本题属于基础题型.17.(7分)先化简,再求值:÷(﹣),其中a=+2.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:÷(﹣),====÷,÷,•,.当a=+2时,原式==1+2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵菱形ABCD,∴BA=BC,∠A=∠C,∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°,在△ABE与△CBF中,∴△ABE≌△CBF(AAS),∴AE=CF.【点评】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球12足球排球乒乓球羽毛球报名人数占总人数的百分比84a10b24%(1)该班学生的总人数为50人;(2)由表中的数据可知:a=16,b=24%;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.【分析】(1)用篮球的人数除以其所占百分比即可得总人数;(2)根据各项目的人数之和等于总人数可求得a的值,用羽毛球的人数除以总人数可得b的值;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)该班学生的总人数为12÷24%=50(人),故答案为:50;(2)a=50﹣(12+8+4+10)=16,则b=×100%=20%,故答案为:16,24%;(3)画树状图如下:由树状图知,共有12种等可能结果,其中刚好选中一男一女的有8种结果,∴刚好选中一男一女的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?【分析】(1)设甲、乙两种报纸的单价分别是x元、y元,根据购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元列出方程组,解方程组即可;(2)设该销售处每天购进甲种报纸a份,根据销售这两种报纸的总利润不低于300元列出不等式,求解即可.【解答】解:(1)设甲、乙两种报纸的单价分别是x元、y元,根据题意得,解得.答:甲、乙两种报纸的单价分别是0.6元、0.8元;(2)设该销售处每天购进甲种报纸a份,根据题意,得(1﹣0.6)a+(1.5﹣0.8)(600﹣a)≥300,解得a≤400.答:该销售处每天最多购进甲种报纸400份.【点评】本题考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系与不等关系.21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.【分析】(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.解Rt△EHF求出EH即可解决问题;(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2,想办法构建方程求出m即可解决问题;【解答】解:(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.∴OM=EH,∵∠EHF=90°,EF=4,∠2=45°,∴EH=FH=OM=4米.(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2∵AB∥OD,∴=,∴=,∴OC=,∴AK=OB=+1,NK=m﹣2,在Rt△AKN中,∵∠1=60°,∴NK=AK,∴m﹣2=(+1),∴m=(14+8)米,∴MN=ON﹣OM=14+8﹣4=(14+4)米.【点评】本题考查解直角三角形的应用,轴对称的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.【分析】(1)把C点的坐标代入,即可求出反比例函数的解析式,再求出E点的坐标即可;(2)求出B、F的坐标,再求出解析式即可;(3)先求出两函数的交点坐标,即可得出答案.)【解答】解:(1)∵反比例函数y1=(x>0)图象经过点C,C点的坐标为(6,2),∴k=6×2=12,即反比例函数的解析式是y1=,∵矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),∴点E的纵坐标是2+1=3,把y=3代入y1=得:x=4,即点E的坐标为(4,3);(2)∵过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4,把y=4代入y1=得:4=,解得:x=3,即F点的坐标为(3,4),∵E(4,3),C(6,2),E为矩形ABCD的边AD的中点,∴AE=DE=6﹣4=2,∴B点的横坐标为4﹣2=2,即点B的坐标为(2,2),把B、F点的坐标代入直线y2=ax+b得:,解得:a=2,b=﹣2,即直线BF的解析式是y=2x﹣2;(3)∵反比例函数在第一象限,F(3,4),∴当y1>y2时,自变量x的取值范围是0<x<3.【点评】本题考查了一次函数与反比例函数的交点问题、函数的图象、用待定系数法求出一次函数与反比例函数的解析式、矩形的性质等知识点,能正确求出两函数的解析式是解此题的关键.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,=.②当△CDH∽△MFB时,=,分别构建方程即可解决问题;【解答】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CDM=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD=DM=∴OD=OC﹣CD=4﹣,,∴AD=OA+OD=8+4﹣=12﹣在Rt△ADP中,,DP=AD•tan30°=(12﹣)×=4﹣1,∴PM=PD﹣DM=4﹣2.(3)如图2中,由(2)可知:BF=BC=4,FM=BF=4,CM=2DM=2,CD=∴FM=FC﹣CM=4﹣2,,①当△CDH∽△BFM时,=,∴=,∴DH=②当△CDH∽△MFB时,=,∴=,∴DH=∵DN=,=,∴DH<DN,符合题意,综上所述,满足条件的DH的值为或.【点评】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.【分析】(1)由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入求出a即可解决问题;(2)利用勾股定理求出AN的长,分三种情形分别求解即可解决问题;(3)①设B(m,﹣2),则直线AB的解析式为y=x+,由直线l⊥AB,推出直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,只要证明△>0即可;②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,求出方程的两根即可解决问题;【解答】(1)解:由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣4,即y=x2﹣2x﹣2.(2)解:由题意:A(2,﹣1.5),N(0,﹣2).∴AN==,当PA=AN时,可得P1(2,).当NA=NP时,可得P2(2,﹣),当PN=PA时,设P4(2,a),则有(a+)2=22+(a+2)2,﹣),P3(2,﹣﹣解得a=﹣,∴P4(2,﹣),综上所述,满足条件的点OP坐标为P1(2,(2,﹣﹣),P2(2,﹣),P3(2,﹣﹣),P4);(3)①证明:如图2中,设B(m,﹣2),则直线AB的解析式为y=∵直线l⊥AB,x+,∴直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,∴△=[4(1﹣m)]2﹣4•1•4(m2﹣2m)=16>0,∴直线l与抛物线有两个交点.②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,∵x2+4(1﹣m)x+4(m2﹣2m)=0,∴x==,,∴x2=,x1=∴EF=x2﹣x1=4.【点评】本题考查二次函数综合题、一次函数的应用、等腰三角形的判定和性质、一元二次方程的根判别式等知识,解题的关键是学会利用参数解决问题,学会构建一次函数,利用方程组解决问题,属于中考压轴题.中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.给出四个数0,,1,﹣2,其中最大的数是()A.0B.C.1D.﹣22.下列各数中,能使有意义的是()A.0B.2C.4D.63.共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是()A.4.9×104B.4.9×105C.0.49×104D.49×1044.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是()A.主视图5.下列各式计算正确的是()A.a3+2a2=3a5B.3=76.下列说法正确的是()B.左视图C.俯视图D.主视图和左视图+4C.(a6)2÷(a4)3=0D.(a3)2•a4=a9A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等7.在下列函数中,其图象与x轴没有交点的是()A.y=2xB.y=﹣3x+1C.y=x2D.y=8.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分9.下列图形中,属于轴对称图形的是()A.B.C.D.10.关于抛物线y=(x+2)2+3,下列说法正确的是()A.对称轴是直线x=2,y有最小值是3B.对称轴是直线x=﹣2,y有最大值是3C.对称轴是直线x=2,y有最大值是3D.对称轴是直线x=﹣2,y有最小值是3二.填空题(共4小题,满分16分,每小题4分)11.方程=的解是x=.12.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于.13.关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是.14.如图,▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P、Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则线段AE的长为.三.解答题(共6小题,满分54分)15.(6分)计算:16.(12分)(1)计算:2﹣1+4cos60°﹣(﹣π)°;(2)解方程:x2+4x﹣1=0.17.(8分)已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.(1)求从袋中随机摸出一个球是红球的概率.(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.18.(8分)如图是云梯升降车示意图,其点A位置固定,AC可伸缩且可绕点A转动,已知点A距离地面BD的高度AH为3.4米.当AC长度为9米,张角∠HAC为119°时,求云梯升降车最高点C距离地面的高度.(结果保留一位小数)参考数据:sin29°≈0.49,cos29°≈0.88,tan29°≈0.5519.(10分)正比例函数y=kx和反比例函数的图象相交于A,B两点,已知点A的横坐标为1,纵坐标为3.(1)写出这两个函数的表达式;(2)求B点的坐标;(3)在同一坐标系中,画出这两个函数的图象.20.(10分)如图,在边长为4的正方形ABCD中,E为AD的中点,F为BC边上一动点,设BF=t(0≤t≤2),线段EF的垂直平分线GH分别交边CD,AB于点G,H,过E作EM⊥BC于点M,过G作GN⊥AB于点N.(1)当t≠2时,求证:△EMF≌△GNH;(2)顺次连接E、H、F、G,设四边形EHFG的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.四.填空题(共5小题,满分20分,每小题4分)21.若m、n是方程x2+2018x﹣1=0的两个根,则m2n+mn2﹣mn=22.“赵爽弦图”是由四个全等的直角三角形和中间一个小正方形拼成的大正方形,小明同学向一个如图所示的“赵爽弦图”的飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上).若飞镖板中直角三角形的两条直角边的长分别为1和2,则投掷一次飞镖扎在中间小正方形区域的概率是.23.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是.24.平面直角坐标系xOy中,若抛物线y=ax2上的两点A、B满足OA=OB,且tan∠OAB=,则称线段AB为该抛物线的通径.那么抛物线y=x2的通径长为.25.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4;E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠DCE的值为.五.解答题(共3小题,满分30分)26.(8分)中考前,某校文具店以每套5元购进若干套考试用具,为让利考生,该店决定售价不超过7元,在几天的销售中发现每天的销售数量y(套)和售价x(元)之间存在一次函数关系,绘制图象如图.(1)y与x的函数关系式为(并写出x的取值范围);(2)若该文具店每天要获得利润80元,则该套文具的售价为多少元?(3)设销售该套文具每天获利w元,则销售单价应为多少元时,才能使文具店每天的获利最大?最大利润是多少?27.(10分)【感知】如图①,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),∠A=∠B=∠DPC=90°.易证:△DAP∽△PBC(不要求证明).【探究】如图②,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),∠A=∠B=∠DPC.(1)求证:△DAP~△PBC.(2)若PD=5,PC=10,BC=9,求AP的长.【应用】如图③,在△ABC中,AC=BC=4,AB=6,点P在边AB上(点P不与点A、B重合),连结CP,作∠CPE=∠A,PE与边BC交于点E.当CE=3EB时,求AP的长.28.(12分)在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.中学中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据实数的大小比较,即可解答.【解答】解:∵∴最大的数是故选:B.,,【点评】本题考查了实数的大小比较,解决本题的关键是熟记实数的大小比较.2.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:若所以x≥5,有意义,则x﹣5≥0,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.3.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:49万=4.9×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.【分析】根据三视图的意义,可得答案.【解答】解:若把正方体A向右平移到正方体P前面,俯视图发生变化,故选:C.【点评】本题考查了简单组合体的三视图,利用三视图的定义是解题关键.5.【分析】结合选项分别进行合并同类项、二次根式的加法运算、同底数幂的除法、积的乘方和幂的乘方等运算,然后选择正确答案.【解答】解:A、a3和2a2不是同类项,不能合并,故本选项错误;B、3+4=7,计算正确,故本选项正确;C、(a6)2÷(a4)3=1,原式计算错误,故本选项错误;D、(a3)2•a4=a10,原式计算错误,故本选项错误.故选:B.【点评】本题考查了合并同类项、二次根式的加法运算、同底数幂的除法、积的乘方和幂的乘方等知识,掌握运算法则是解答本题的关键.6.【分析】根据全等三角形的判定方法,此题应采用排除法,对选项逐个进行分析从而确定正确答案.【解答】解:A、全等三角形的周长相等,但周长相等的两个三角形不一定全等,故本选项错误;B、全等三角形的面积相等,但面积相等的两个三角形不一定全等,故本选项错误;C、判定全等三角形的过程中,必须有边的参与,故本选项错误;D、正确,符合判定方法SSS.故选:D.【点评】本题考查全等三角形的判定方法,常用的方法有SSS,SAS,AAS,ASA等,应该对每一种方法彻底理解真正掌握并能灵活运用.而满足SSA,AAA是不能判定两三角形是全等的.7.【分析】依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.【解答】解:A.正比例函数y=2x与x轴交于(0,0),不合题意;B.一次函数y=﹣3x+1与x轴交于(,0),不合题意;C.二次函数y=x2与x轴交于(0,0),不合题意;D.反比例函数y=与x轴没有交点,符合题意;故选:D.【点评】本题考查了函数的性质,注意反比例函数的图象与坐标轴没有公共点,即x、y值不为0.8.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.9.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.10.【分析】直接根据顶点式确定最值即可确定正确的选项.【解答】解:抛物线y=(x+2)2+3的对称轴为直线x=﹣2,当x=﹣2时有最小值3,故选:D.【点评】此题考查了二次函数的最值,能够化为顶点式是解答本题的关键,难度不大.二.填空题(共4小题,满分16分,每小题4分)11.【分析】两边都乘以3x(x+5),化分式方程为整式方程,解之求得x的值,再检验即可得.【解答】解:两边都乘以3x(x+5),得:6x=x+5,解得:x=1,检验:x=1时,3x(x+5)=18≠0,所以原分式方程的解为x=1,故答案为:1.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.12.【分析】过点O作OE⊥AB于点E,OF⊥CD于点F,则E、O、F三点共线,根据平行线分线段成比例可得即可,【解答】解:如图,过点O作OE⊥AB于点E,OF⊥CD于点F,则E、O、F三点共线,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴,故答案为:2:3.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.13.【分析】根据判别式的意义得到△=(﹣6)2﹣4×3×m>0,然后解不等式即可.【解答】解:根据题意得△=(﹣6)2﹣4×3×m>0,解得m<3.故答案为m<3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.【分析】只要证明BE=BC即可解决问题.【解答】解:∵由题意可知CE是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE﹣AB=1,故答案为:1.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三.解答题(共6小题,满分54分)15.【分析】先计算负整数指数幂、代入三角函数值、化简二次根式、计算零指数幂,再进一步计算可得.【解答】解:原式=+2×﹣4+1=+﹣4+1=1﹣2.【点评】本题主要考查实数的混合运算,解题的关键是掌握负整数指数幂、三角函数值、二次根式的性质及零指数幂的规定.16.【分析】(1)根据负整数指数幂、零指数幂和特殊角的三角函数值计算;(2)利用配方法解方程.【解答】解:(1)原式=+4×﹣1=+2﹣1=;(2)x2+4x=1,x2+4x+4=5,(x+2)2=5,x+2=±,所以x1=﹣2+,x2=﹣2﹣.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了实数的运算.17.【分析】(1)直接利用概率公式计算可得;(2)先列表得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得;(3)设有x个红球被换成了黄球,根据颜色是一白一黄的概率为列出关于x的方程,解之可得.【解答】解:(1)∵袋中共有7个小球,其中红球有5个,∴从袋中随机摸出一个球是红球的概率为;(2)列表如下:白白红红红红红白白红红红红红(白,白)(白,白)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)由表知共有49种等可能结果,其中两次摸出的球恰好颜色不同的有20种结果,∴两次摸出的球恰好颜色不同的概率为(3)设有x个红球被换成了黄球.;根据题意,得:,解得:x=3,即袋中有3个红球被换成了黄球.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】作CE⊥BD于E,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.5m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.【解答】解:作CE⊥BD于E,AF⊥CE于F,如图,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=119°﹣90°=29°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin29°=9×0.49=4.41,∴CE=CF+EF=4.41+3.4≈7.8(m),答:云梯升降车最高点C距离地面的高度为7.8m.【点评】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行计算.19.【分析】(1)根据待定系数法,将A(1,3)代入y=kx和y=即可得到函数解析式;(2)将一次函数和反比例函数组成方程组,求出方程组的解即可得B点坐标;(3)先描点、后连线即可得函数图象.【解答】解:(1)∵正比例函数y=kx与反比例函数的图象都过点A(1,3),则k=3,,∴正比例函数是y=3x,反比例函数是.(2)∵点A与点B关于原点对称,∴点B的坐标是(﹣1,﹣3).(3)∵正比例函数的图象过原点,所以令x=1,则y=3,图象过(1,3),描出此点即可;∵反比例函数的图象是双曲线,∴应在每一个双曲线上描出3各点,即可画出函数图象.【点评】此题是一综合题,既要能熟练正确求出方程组的解,又要会用待定系数法求函数的解析式,同时还要掌握描点法作图.20.【分析】(1)只要证明EM=GN,∠1=∠2,即可利用ASA证明.(2)根据S=•EF•GH计算,利用二次函数的性质即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形,EM⊥BC,GN⊥AB,∴EM=GN=AB=AD,∵∠1+∠4=90°,∠2+∠3=90°,∠3=∠4,∴∠1=∠2,在△EMF和△GNH中,,∴△EMF≌△GNH.(2)∵△EMF≌△GNH,∴EF=GH,∵BF=t,BM=2,∴FM=2﹣t,∴EF2=42+(2﹣t)2,∵S=•EF•GH=(x﹣2)2+8,∵0≤t≤2,∴t=2时,S有最小值,最小值为8.【点评】本题科学正方形的性质、全等三角形的判定和性质,线段的垂直平分线的性质、二次函数等知识,解题的关键是灵活运用所学知识解决问题,记住对角线垂直的四边形的面积的计算方法,学会利用二次函数的性质解决最值问题,属于中考常考题型.四.填空题(共5小题,满分20分,每小题4分)21.【分析】根据根与系数的关系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整体代入的方法计算.【解答】解:∵m、n是方程x2+2018x﹣1=0的两个根,∴m+n=﹣2018,mn=﹣1,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣2019)=2019,故答案为:2019.【点评】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0的两根分别为x1与x2,则x1+x2=﹣,x1•x2=.解题时要注意这两个关系的合理应用.22.【分析】求出大小正方形的面积,根据面积比即可解决问题;【解答】解:由题意大正方形的面积为5,小正方形的面积为1,∴投掷一次飞镖扎在中间小正方形区域的概率是.故答案为.【点评】本题考查概率、勾股定理、正方形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,从而得出S△AOB=3.【解答】解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1).如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2.∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,∴S△AOB=3.故答案是:3.【点评】主要考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了反比例函数图象上点的坐标特征,梯形的面积.24.【分析】根据题意可以设出点A的坐标,从而可以求得通径的长.【解答】解:设点A的坐标为(﹣2a,a),点A在x轴的负半轴,则a=,解得,a=0(舍去)或a=,∴点A的横坐标是﹣1,点B的横坐标是1,∴AB=1﹣(﹣1)=2,故答案为:2.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.25.【分析】作CH⊥AB于H,EM⊥BC于M,因为∠B=45°,BC=4,所以BH=CH=4,因为AC=5,所以AH=3,AB=7,由题意,可得∠ACD=∠D=∠B=45°,∠DCE=∠BCE,所以∠ACE=∠AEC,即AE=AC=5,可得BE=2,BM=EM=,在Rt△CEM中,利用锐角三角函数定义即可得出tan∠DCE的值.【解答】解:如图,作CH⊥AB于H,EM⊥BC于M,∵∠B=45°,BC=4∴BH=CH=4,∵AC=5,,∴AH=3,∴AB=AH+BH=3+4=7,∵将△BEC沿EC所在直线翻折得到△DEC,且DE∥AC,∴∠ACD=∠D=∠B=45°,∠DCE=∠BCE,∴∠ACE=∠ACD+∠DCE=∠B+∠BCE=∠AEC,∴AE=AC=5,∴BE=AB﹣AE=7﹣5=2,∴BM=EM=,∵BC=4∴MC=,,∴tan∠DCE=.故答案为:.【点评】本题考查图形的翻折,平行线的性质,锐角三角函数的定义和解直角三角形的知识.解题的关键是熟练掌握图形翻折的性质.五.解答题(共3小题,满分30分)26.【分析】(1)设y与x的函数关系式为:y=kx+b,把(5.5,90)和(6,80)代入y=kx+b即可得到结论;(2)根据题意得方程即可得到结论;(3)根据题意得二次函数解析式,根据二次函数的性质即可得到结论.【解答】解:(1)设y与x的函数关系式为:y=kx+b,把(5.5,90)和(6,80)代入y=kx+b得,,解得:,∴y与x的函数关系式为:y=﹣20x+200(5≤x≤7);故答案为:y=﹣20x+200;(2)根据题意得,(x﹣5)(﹣20x+200)=80,解得:x1=6,x2=9(不合题意舍去),答:该套文具的售价为6元;(3)根据题意得,w=(x﹣5)(﹣20x+200)=﹣20x2+300x﹣1000,当x=﹣=﹣=7.5,∵7.5>7,∴当x=7时,文具店每天的获利最大,最大利润是(7﹣5)(﹣20×7+200)=120(元),答:销售单价应为7元时,才能使文具店每天的获利最大,最大利润是120元.【点评】本题考查了二次函数的应用,主要利用了待定系数法求一次函数解析式二次函数的关系式的求解,比较简单,根据获利=每件商品的利润×销售量是解题的关键.27.【分析】【探究】(1)根据外角的性质得到∠DPB=∠A+∠ADP,等量代换得到∠ADP=∠CPB,根据相似三角形的判定定理即可得到结论;(2)根据相似三角形的性质得到,代入数据即可得到结论;【应用】根据等腰三角形的性质得到∠A=∠B,根据相似三角形的性质得到AC•BE=AP•BP,代入数据即可得到结论.【解答】解:【探究】(1)∵∠DPB=∠A+∠ADP,∴∠DPC+∠CPB=∠A+∠ADP,∵∠A=∠DPC,∴∠ADP=∠CPB,∵∠A=∠B,∴△DAP∽△PBC;(2)∵△DAP∽△PBC,∴∴,,∴AP=4.5;【应用】∵AC=BC,∴∠A=∠B,∵∠CPE=∠A,∴∠A=∠CPE=∠B,由探究得△CAP∽△PBE,∴=,∴AC•BE=AP•BP,∵BC=4,CE=3EB,∴BE=1,∵AC=4,BP=AB﹣AP=6﹣AP,∴AP(6﹣AP)=4,∴AP=3+或AP=3﹣.【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,正确的识别图形是解题的关键.28.【分析】(1)由y=﹣x2+bx+c经过点A、B、C,A(﹣1,0),C(0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令﹣x2+2x+3=0,求得点B的坐标,然后设直线BC的解析式为y=kx+b′,由待定系数法即可求得直线BC的解析式,再设P(a,3﹣a),即可得D(a,﹣a2+2a+3),即可求得PD的长,由S△BDC=S△PDC+S△PDB,即可得S△BDC=﹣(a﹣)2+,利用二次函数的性质,即可求得当△BDC的面积最大时,求点P的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n﹣)2﹣,然后根据n的取值得到最小值.【解答】解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)令﹣x2+2x+3=0,∴x1=﹣1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,∴,解得:,∴直线BC的解析式为y=﹣x+3,设P(a,3﹣a),则D(a,﹣a2+2a+3),∴PD=(﹣a2+2a+3)﹣(3﹣a)=﹣a2+3a,∴S△BDC=S△PDC+S△PDB=PD•a+PD•(3﹣a)=PD•3=(﹣a2+3a)=﹣(a﹣)2+,∴当a=时,△BDC的面积最大,此时P(,);(3)由(1),y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),设N(1,n),则0≤n≤4,取CM的中点Q(,),∵∠MNC=90°,∴NQ=CM,∴4NQ2=CM2,∵NQ2=(1﹣)2+(n﹣)2,∴4[=(1﹣)2+(n﹣)2]=m2+9,整理得,m=n2﹣3n+1,即m=(n﹣)2﹣,∵0≤n≤4,当n=上,m最小值=﹣,n=4时,m=5,综上,m的取值范围为:﹣≤m≤5.【点评】此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确确的字母填涂在答题卡上相应的位置.1.(4分)在下面四个数中,无理数是()A.0B.﹣3.1415……C.D.2.(4分)如图,AB∥EF,FD平分∠EFC,若∠DFC=50°,则∠ABC=()A.50°B.60°C.100°D.120°3.(4分)如图,数轴上点A对应的数为2,AB⊥OA于A,且AB=1,以O为圆心,OB长为半径作弧,交数轴于点C,则OC长为()A.3B.C.D.4.(4分)如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于D,连结AD.若AD=AC,∠B=25°,则∠C=()A.70°B.60°C.50°D.40°5.(4分)以下四个事件是必然事件的是()①|a|≥0②a0=1③am•an=amn④a﹣nA.①②B.①④C.②③D.③④6.(4分)多项式3x2y﹣6y在实数范围内分解因式正确的是()=(a≠0,n为整数)A.B.3y(x2﹣2)C.y(3x2﹣6)D.7.(4分)若n(n≠0)是关于x的方程x2+mx+2n=0的一个根,则m+n的值是()A.1B.2C.﹣1D.﹣28.(4分)凉山州某校举行“禁毒防艾”知识竞赛,该校八年级(1)班答题情况如图所示,则该班正确答题数所组成的一组数据的众数和中位数分别是()A.14、15B.14、20C.20、15D.20、169.(4分)下列说法正确的是()①平行四边形既是中心对称图形,又是轴对称图形;②同一物体的三视图中,俯视图与左视图的宽相等;③线段的正投影是一条线段;④主视图是正三角形的圆锥的侧面展开图一定是半圆;⑤图形平移的方向总是水平的,图形旋转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酿酒厂天然气供气服务合同
- 物联网工程居间合同
- 农业政策支持方案
- 补充借款合同格式
- 新媒体运营合作协议
- 林木种植与林业管理作业指导书
- 大型钻机租赁合同
- 大厦物业租赁合同
- 小学二年级数学上册口算题卡
- 2025年汉中货运上岗证模拟考试试题
- (完整版)《植物生产与环境》试卷与答案
- 二年级上册竖式计算题100题及答案
- 【光明乳业企业偿债能力问题及完善建议8900字论文】
- 多益网络游戏开发工程师岗位笔试选择题附笔试高分技巧
- 提高感染性休克集束化治疗达标率
- 译林版七年级下册英语单词默写表
- 专题01 中华传统文化-中考英语时文阅读专项训练
- 阿特拉斯拧紧工具维修培训课件
- 密封条模板大全
- 页眉和页脚基本知识课件
- ST语言编程手册
评论
0/150
提交评论