版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.过点,直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或42.若函数f(x)=2x+3x+a在区间(0,1)A.(-∞,-5)C.(0,5) D.(1,+3.设函数,则()A.是偶函数,且在单调递增 B.是偶函数,且在单调递减C.是奇函数,且在单调递增 D.是奇函数,且在单调递减4.化简A. B.C.1 D.5.若函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|)的部分图象如图所示,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则g(x)=()A.2cosx B.2sinxC.2cosx D.2sinx6.若直线与曲线有两个不同的交点,则实数的取值范围为A. B.C. D.7.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.如图,正方体中,①与平行;②与垂直;③与垂直以上三个命题中,正确命题的序号是()A.①② B.②③C.③ D.①②③9.如图是一个体积为10的空间几何体的三视图,则图中的值为()A2 B.3C.4 D.510.函数单调递增区间为A. B.C. D.11.已知函数,则()A.2 B.5C.7 D.912.已知向量,,且,那么()A.2 B.-2C.6 D.-6二、填空题(本大题共4小题,共20分)13.由直线上的任意一个点向圆引切线,则切线长的最小值为________.14.已知函数是R上的减函数,则实数a的取值范围为_______15.制造一种零件,甲机床的正品率为,乙机床的正品率为.从它们制造的产品中各任抽1件,则两件都是正品的概率是__________16.圆的圆心到直线的距离为______.三、解答题(本大题共6小题,共70分)17.已知,,求,的值;求的值18.已知函数f(x)=a-.(1)若2f(1)=f(2),求a的值;(2)判断f(x)在(-∞,0)上的单调性并用定义证明.19.函数的部分图象如图所示.(1)求A,,的值;(2)将函数的图象向右平移个单位长度,得到函数的图象,若,且,求的值.20.某校食堂需定期购买大米已知该食堂每天需用大米吨,每吨大米的价格为6000元,大米的保管费用单位:元与购买天数单位:天的关系为,每次购买大米需支付其他固定费用900元该食堂多少天购买一次大米,才能使平均每天所支付的总费用最少?若提供粮食的公司规定:当一次性购买大米不少于21吨时,其价格可享受8折优惠即原价的,该食堂是否应考虑接受此优惠条件?请说明理由21.已知角的顶点为坐标原点,始边为轴的非负半轴,终边经过点,且.(1)求实数的值;(2)若,求的值.22.设全集,集合,(1)当时,求;(2)若,求实数的取值范围
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】解方程即得解.【详解】由题得.故选:A【点睛】本题主要考查斜率的计算,意在考查学生对该知识的理解掌握水平.2、B【解析】利用零点存在性定理知f(0)⋅f(1)<0,代入解不等式即可得解.【详解】函数f(x)=2x+3x+a由零点存在性定理知f(0)⋅f(1)<0,即1+a5+a<0所以实数a的取值范围是(-5,-1)故选:B3、D【解析】利用函数奇偶性的定义可判断出函数的奇偶性,分析函数解析式的结构可得出函数的单调性.【详解】函数的定义域为,,所以函数为奇函数.而,可知函数为定义域上减函数,因此,函数为奇函数,且是上的减函数.故选:D.4、D【解析】先考虑分母化简,利用降次公式,正切的两角和与差公式打开,整理,可得答案【详解】化简分母得.故原式等于.故选D【点睛】本题主要考查了两角和与差公式以及倍角公式.属于基础题5、A【解析】观察函数图像,求得,再结合函数图像的平移变换即可得解.详解】解:由图可知,,即,又,所以,即,又由图可知,所以,又,即即,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则,故选:A.【点睛】本题考查了利用函数图像求解析式,重点考查了函数图像的平移变换,属基础题.6、D【解析】表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分作出曲线的图象,在同一坐标系中,再作出斜率是1的直线,由左向右移动,可发现,直线先与圆相切,再与圆有两个交点,直线与曲线相切时m值为,直线与曲线有两个交点时的m值为1,则故选D7、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.8、C【解析】根据线面平行、线面垂直的判定与性质,即可得到正确答案【详解】解:对于①,在正方体中,由图可知与异面,故①不正确对于②,因为,不垂直,所以与不垂直,故②不正确对于③,在正方体中,平面,又∵平面,∴与垂直.故③正确故选:C【点睛】此题考查线线平行、线线垂直,考查学生的空间想象能力和对线面平行、线面垂直的判定与性质的理解与掌握,属基础题9、A【解析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体,其中棱柱的体积为:3×2×1=6,棱锥的体积为:×3×2×x=2x则组合体的体积V=6+2x=10,解得:x=2,故选A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.10、A【解析】,所以.故选A11、D【解析】先求出,再求即可,【详解】由题意得,所以,故选:D12、B【解析】根据向量共线的坐标表示,列出关于m的方程,解得答案.【详解】由向量,,且,可得:,故选:B二、填空题(本大题共4小题,共20分)13、【解析】利用切线和点到圆心的距离关系即可得到结果.【详解】圆心坐标,半径要使切线长最小,则只需要点到圆心的距离最小,此时最小值为圆心到直线的距离,此时,故答案为:【点睛】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,属于基础题.14、【解析】由已知结合分段函数的性质及一次函数的性质,列出关于a的不等式,解不等式组即可得解.【详解】因为函数是R上的减函数所以需满足,解得,即所以实数a的取值范围为故答案为:15、【解析】由独立事件的乘法公式求解即可.【详解】由独立事件的乘法公式可知,两件都是正品的概率是.故答案为:16、1【解析】利用点到直线的距离公式可得所求的距离.【详解】圆心坐标为,它到直线的距离为,故答案为:1【点睛】本题考查圆的标准方程、点到直线的距离,此类问题,根据公式计算即可,本题属于基础题.三、解答题(本大题共6小题,共70分)17、(1),;(2).【解析】正切的二倍角公式得,再由同角三角函数关系式即可得的值.先计算然后由角的范围即可确定角.【详解】,且,所以:故:,,,所以:,由于:所以:,所以:,,,,所以:【点睛】本题考查三角函数关系式的恒等变换,考查给值求角问题,通过求角的某种三角函数值来求角,在选取函数时,有以下原则:用已知三角函数值的角来表示未知角,(1)已知正切函数值,则选正切函数;(2)已知正弦、余弦函数值,则选正弦或余弦函数.若角的范围是,则选正弦、余弦皆可;若角的范围是,则选余弦较好;若角的范围为,则选正弦较好18、(1)3(2)f(x)在(-∞,0)上是单调递增的,证明见解析【解析】(1)由已知列方程求解;(2)由复合函数单调性判断,根据单调性定义证明;【小问1详解】∵2f(1)=f(2),∴2(a-2)=a-1,∴a=3.【小问2详解】f(x)在(-∞,0)上是单调递增的,证明如下:设x1,x2∈(-∞,0),且x1<x2,则f(x1)-f(x2)=(a-)-(a-)=-=,∵x1,x2∈(-∞,0),∴x1x2>0.又x1<x2,∴x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)=a-在(-∞,0)上是单调递增的.19、(1),,(2)或【解析】(1)根据函数的部分图象即可求出A,,然后代入点,由即可求出的值;(2)根据三角函数的图象变换先求出函数的解析式,然后利用,结合即可确定的值.小问1详解】解:由图可知,,,所以,即,所以.将点代入得,,又,所以;【小问2详解】解:由(1)知,由题意有,所以,即,因为,所以,所以或,即或,所以的值为或.20、(1)10天购买一次大米;(2)见解析.【解析】根据条件建立函数关系,结合基本不等式的应用求最值即可;求出优惠之后的函数表达式,结合函数的单调性求出函数的最值进行判断即可【详解】解:设每天所支付的总费用为元,则,当且仅当,即时取等号,则该食堂10天购买一次大米,才能使平均每天所支付的总费用最少若该食堂接受此优惠条件,则至少每35天购买一次大米,设该食堂接受此优惠条件后,每x,天购买一次大米,平均每天支付的总费用为,则,设,,则在时,为增函数,则当时,有最小值,约为,此时,则食堂应考虑接受此优惠条件【点睛】本题主要考查函数的应用问题,基本不等式的性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西京学院《室内陈设设计》2022-2023学年第一学期期末试卷
- 音乐万马奔腾课件
- 西京学院《版面设计》2023-2024学年第一学期期末试卷
- 西华师范大学《小学语文课程与教学》2022-2023学年第一学期期末试卷
- 西华师范大学《水污染防治技术》2023-2024学年第一学期期末试卷
- 西华师范大学《摄影与摄像技艺》2021-2022学年第一学期期末试卷
- 9正确认识广告 说课稿-2024-2025学年道德与法治四年级上册统编版
- 电工高级工专项测试题及答案
- 第十二章第二节《滑轮》说课稿 -2023-2024学年人教版八年级物理下册
- 2024年代森锰锌行业前景分析:代森锰锌行业发展趋势推动行业国际化
- 仓储物流中心物业安全管理
- 咨询师基础心理学课件
- 医疗器械注册专员培训
- 期末复习重要考点03 《一元一次方程》十大考点题型(热点题型+限时测评)(原卷版)
- 生物丨金太阳(25-69C)广东省2025届高三10月大联考生物试卷及答案
- 期中测试卷(试题)2024-2025学年人教版数学三年级上册
- 车队车辆挂靠合同模板
- 冷库保洁服务方案
- 中国戏曲 昆曲学习通超星期末考试答案章节答案2024年
- 期中 (试题) -2024-2025学年人教PEP版英语四年级上册
- 动物疫病防治员(高级)理论考试题及答案
评论
0/150
提交评论