版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.函数的图象与函数的图象关于直线对称,则函数的单调递减区间为A. B.C. D.2.把长为的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()A. B.C. D.3.已知函数在区间上单调递增,则实数a的取值范围为()A. B.C. D.4.设,则等于A. B.C. D.5.设a为实数,“”是“对任意的正数x,”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件6.已知是偶函数,它在上是减函数.若,则的取值范围是()A. B.C. D.7.已知集合,下列选项正确的是()A. B.C. D.8.下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“”是全称量词命题;③命题“”的否定为“”;④命题“是的必要条件”是真命题;A.0 B.1C.2 D.39.下列向量的运算中,正确的是A. B.C. D.10.若函数满足,,则下列判断错误的是()A. B.C.图象的对称轴为直线 D.f(x)的最小值为-111.命题“,”否定是()A., B.,C., D.,12.始边是x轴正半轴,则其终边位于第()象限A.一 B.二C.三 D.四二、填空题(本大题共4小题,共20分)13.已知是锐角,且sin=,sin=_________.14.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,以水车的中心为原点,过水车的中心且平行于水平面的直线为轴,建立如图平面直角坐标系,一个水斗从点出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时秒.经过秒后,水斗旋转到点,设点的坐标为,其纵坐标满足,当秒时,___________.15.已知,则________.16.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是__________三、解答题(本大题共6小题,共70分)17.设矩形的周长为,其中,如图所示,把它沿对角线对折后,交于点.设,.(1)将表示成的函数,并求定义域;(2)求面积的最大值.18.已知函数的最小正周期为.(1)求函数的单调递增区间;(2)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.若在上至少有个零点,求的最小值.19.已知幂函数的图象经过点.(1)求的解析式;(2)用定义证明:函数在区间上单调递增.20.某网站为调查某项业务的受众年龄,从订购该项业务的人群中随机选出200人,并将这200人的年龄按照,,,,分成5组,得到的频率分布直方图如图所示:(1)求的值和样本的平均数(同一组数据用该区间的中点值作代表);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求这2人中恰有1人年龄在中的概率21.在平面直角坐标系中,已知角的页点为原点,始边为轴的非负半轴,终边经过点.(1)求的值;(2)求旳值.22.在中,已知,,且AC边的中点M在y轴上,BC边的中点N在x轴上,求:顶点C的坐标;
直线MN的方程
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】先由函数是函数的反函数,所以,再求得,再求函数的定义域,再结合复合函数的单调性求解即可.【详解】解:由题意函数的图象与函数的图象关于直线对称知,函数是函数的反函数,所以,即,要使函数有意义,则,即,解得,设,则函数在上单调递增,在上单调递减.因为函数在定义域上为增函数,所以由复合函数的单调性性质可知,则此函数的单调递减区间是,故选D【点睛】本题考查了函数的反函数的求法及复合函数的单调性,重点考查了函数的定义域,属中档题.2、D【解析】先得到两个正三角形面积之和的表达式,再对其求最小值即可.【详解】设一个正三角形的边长为,则另一个正三角形的边长为,设两个正三角形的面积之和为,则,当时,S取最小值.故选:D3、D【解析】根据二次函数的单调性进行求解即可.【详解】当时,函数是实数集上的减函数,不符合题意;当时,二次函数的对称轴为:,由题意有解得故选:D4、D【解析】由题意结合指数对数互化确定的值即可.【详解】由题意可得:,则.本题选择D选项.【点睛】本题主要考查对数与指数的互化,对数的运算性质等知识,意在考查学生的转化能力和计算求解能力.5、A【解析】根据题意利用基本不等式分别判断充分性和必要性即可.【详解】若,因为,则,当且仅当时等号成立,所以充分性成立;取,因为,则,当且仅当时等号成立,即时,对任意的正数x,,但,所以必要性不成立,综上,“”是“对任意的正数x,”的充分非必要条件.故选:A.6、C【解析】根据偶函数的性质结合单调性可得,即可根据对数函数单调性解出不等式.【详解】由于函数是偶函数,由得,又因为函数在上是减函数,所以在上是增函数,则,即,解得.故选:C.7、B【解析】由已知集合,判断选项中的集合或元素与集合A的关系即可.【详解】由题设,且,所以B正确,A、C、D错误.故选:B8、C【解析】根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.【详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“”是全称量词命题;故②正确;对于③:命题,则,故③错误;对于④:可以推出,所以是的必要条件,故④正确;所以正确的命题为②④,故选:C9、C【解析】利用平面向量的三角形法则进行向量的加减运算,即可得解.【详解】对于A,,故A错误;对于B,,故B错误;对于C,,故C正确;对于D,,故D错误.故选:C.【点睛】本题考查平面向量的三角形法则,属于基础题.解题时,要注意向量的起点和终点.10、C【解析】根据已知求出,再利用二次函数的性质判断得解.【详解】解:由题得,解得,,所以,因为,所以选项A正确;所以,所以选项B正确;因为,所以选项D正确;因为的对称轴为,所以选项C错误故选:C11、B【解析】根据命题的否定的定义判断.【详解】命题“,”的否定是:,故选:B12、B【解析】将转化为内的角,即可判断.【详解】,所以的终边和的终边相同,即落在第二象限.故选:B二、填空题(本大题共4小题,共20分)13、【解析】由诱导公式可求解.【详解】由,而.故答案为:14、【解析】求出关于的函数解析式,将代入函数解析式,求出的值,可得出点的坐标,进而可求得的值.【详解】由题意可知,,函数的最小正周期为,则,所以,,点对应,,则,可得,,,故,当时,,因为,故点不与点重合,此时点,则.故答案为:.15、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.16、【解析】利用函数的图象变换规律,先放缩变换,再平移变换,从而可得答案【详解】将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数的图象;再将的图象向左平移个单位,得到的图象对应的解析式是的图象,故答案为:三、解答题(本大题共6小题,共70分)17、(1),;(2)【解析】(1)由题意得,则,根据,可得,所以,化简整理,即可求得y与x的关系,根据,即可求得x的范围,即可得答案;(2)由(1)可得,,则的面积,根据x的范围,结合基本不等式,即可求得答案.【详解】(1)由题意得:,则,因为在和中,,所以,即,所以在中,,所以,化简可得,因为,所以,解得,所以,;(2)由(1)可得,,所以面积,因为,所以,所以,当且仅当,即时等号成立,此时面积,即面积最大值为【点睛】解题的关键是根据条件,表示出各个边长,根据三角形全等,结合勾股定理,进行求解,易错点为:利用基本不等式求解时,需满足“①正”,“②定”,“③相等”,注意检验取等条件是否成立,考查分析理解,计算化简的能力,属中档题.18、(1);(2).【解析】(1)利用正余弦的倍角公式,结合辅助角公式化简为标准正弦型三角函数,根据周期求得参数,再求其单调区间即可;(2)根据函数图像的平移求得的解析式,根据零点个数,即可求得参数的范围.【详解】(1)函数最小正周期为,则,则,所以,令,解得,则函数的单调递增区间为.(2)由题意:,令,得或.所以在每个周期上恰好有两个零点,若在上至少有个零点,应该大于等于第个零点的横坐标,则.【点睛】本题考查利用正余弦倍角公式和辅助角公式化简三角函数解析式,以及求三角函数的单调区间和零点个数,属综合中档题.19、(1);(2)证明见解析.【解析】(1)设幂函数,由得α的值即可;(2)任取且,化简并判断的正负即可得g(x)的单调性.小问1详解】设,则,解得,∴;【小问2详解】由(1)可知,任取且,则,∵,则,,故,因此函数在上为增函数.20、(1),平均数为岁(2)【解析】(1)根据频率之和等于得出的值,再由频率分布直方图中的数据计算平均数;(2)根据分层抽样确定第1,2组中抽取的人数,再由列举法结合古典概型的概率公式得出概率.【小问1详解】由,得平均数为岁.【小问2详解】第1,2组的人数分别为人,人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为,,,,从5人中随机抽取2人,样本空间可记为,,,,,,,,,,用表示“2人中恰有1人年龄在”,则,,,,,,包含的样本点个数是6.所以2人中恰有1人年龄在中的概率21、(1)(2)【解析】(1)根据三角函数的定义可求得的值,再利用诱导公式结合同角的三角函数关系化简可得结果;(2)利用二倍角的余弦公式可直接求得答案.【小问1详解】由角的终边经过点,可得,,故;小问2详解】.22、(1);(2)【解析】(1)边AC中点M在y轴上,由中点公式得,A,C两点的横坐标和的平均数为0,同理,B,C两点的纵坐标和的平均数为0.构造方程易得C点的坐标(2)根据C点的坐标,结合中点公式,我们可求出M,N两点的坐标,代入两点式即可求出直线MN的方程解:(1)设点C(x,y),∵边AC的中点M在y轴上得=0,∵边BC的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西京学院《室内陈设设计》2022-2023学年第一学期期末试卷
- 音乐万马奔腾课件
- 西京学院《版面设计》2023-2024学年第一学期期末试卷
- 西华师范大学《小学语文课程与教学》2022-2023学年第一学期期末试卷
- 西华师范大学《水污染防治技术》2023-2024学年第一学期期末试卷
- 西华师范大学《摄影与摄像技艺》2021-2022学年第一学期期末试卷
- 9正确认识广告 说课稿-2024-2025学年道德与法治四年级上册统编版
- 电工高级工专项测试题及答案
- 第十二章第二节《滑轮》说课稿 -2023-2024学年人教版八年级物理下册
- 2024年代森锰锌行业前景分析:代森锰锌行业发展趋势推动行业国际化
- 托管安全责任承诺书范文(19篇)
- -常规化验单解读
- BYK-润湿分散剂介绍
- 急性严重创伤抢救流程图
- 家长进课堂小学生建筑知识课件
- 人身保险合同纠纷原告方代理词(参考范本)
- 铁路安全生产管理问题及措施
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题集锦带答案
- 函数的概念 省赛获奖
- 网络安全培训-
- 地下车位转让协议
评论
0/150
提交评论