版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.函数的单调递减区间为A., B.,C., D.,2.已知为常数,函数在内有且只有一个零点,则常数的值形成的集合是A. B.C. D.3.已知两条直线,,且,则满足条件的值为A. B.C.-2 D.24.已知集合,下列选项正确的是()A. B.C. D.5.已知,若函数恰有两个零点、(),那么一定有()A. B.C. D.6.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A. B.C. D.7.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数概率是A. B.C. D.8.设命题,则为()A. B.C. D.9.已知函数,下列说法错误的是()A.函数在上单调递减B.函数是最小正周期为的周期函数C.若,则方程在区间内,最多有4个不同的根D.函数在区间内,共有6个零点10.函数的最小正周期为A. B.C.2 D.411.下列函数是偶函数的是()A. B.C. D.12.函数的图象大致()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知,,,,则______.14.已知,且,则=_______________.15.命题“”的否定是________________.16.若,,则=______;_______三、解答题(本大题共6小题,共70分)17.已知函数的图像过点,且图象上与点最近的一个最低点是.(1)求的解析式;(2)求函数在区间上的取值范围.18.已知实数,且满足不等式.(1)解不等式;(2)若函数在区间上有最小值,求实数的值.19.如图,在直三棱柱中,已知,,设的中点为,求证:(1);(2).20.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.若函数的图象关于点对称,且当时,.(1)求的值;(2)设函数.(i)证明函数的图象关于点对称;(ii)若对任意,总存在,使得成立,求的取值范围.21.已知不过第二象限的直线l:ax-y-4=0与圆x2+(y-1)2=5相切(1)求直线l的方程;(2)若直线l1过点(3,-1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程22.已知函数,.(1)求函数的最小正周期;(2)求函数在区间上的最大值和最小值及相应的的值.
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】由题意得选D.【点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间;由求减区间2、C【解析】分析:函数在内有且只有一个零点,等价于,有一个根,函数与只有一个交点,此时,,详解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零点只有一个,∴函数与只有一个交点,此时,,.故选C.点睛:函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.3、C【解析】根据两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,可得求得a=﹣2,故选C4、B【解析】由已知集合,判断选项中的集合或元素与集合A的关系即可.【详解】由题设,且,所以B正确,A、C、D错误.故选:B5、A【解析】构造两个函数和,根据两个函数的图象恰有两个交点,在同一坐标系内作出函数的图象,结合图象,即可求解.【详解】根据题意,构造两个函数和,则两个函数的图象恰有两个交点,在同一坐标系内作出函数的图象,如图所示,结合图象可得.故选:A.6、A【解析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【详解】两名同学中一名男同学都没有的概率为,则2名同学中至少有一名男同学的概率是.故选:A.7、A【解析】从1,2,3,4这4个数中,不放回地任意取两个数,共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种其中满足条件两个数都是奇数的有(1,3),(3,1)两种情况故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率.故选A.8、D【解析】根据全称量词否定的定义可直接得到结果.【详解】根据全称量词否定的定义可知:为:,使得.故选:.【点睛】本题考查含量词的命题的否定,属于基础题.9、B【解析】A.由时,判断;B.易知是偶函数,作出其图象判断;C.在同一坐标系中作出的图象判断;D.根据函数是偶函数,利用其图象,判断的零点个数即可.【详解】A.当时,,而,上递减,故正确;B.因为,所以是偶函数,当时,,作出其图象如图所示:由图象知;函数不是周期函数,故错误;C.在同一坐标系中作出的图象,如图所示:由图象知:当,方程在区间内,最多有4个不同的根,故正确;D.因为函数是偶函数,只求的零点个数即可,如图所示:由函数图象知,在区间内共有3个,所以函数在区间内,共有6个零点,故正确;故选:B10、C【解析】分析:根据正切函数的周期求解即可详解:由题意得函数的最小正周期为故选C点睛:本题考查函数的最小正周期,解答此类问题时根据公式求解即可11、D【解析】利用偶函数的性质对每个选项判断得出结果【详解】A选项:函数定义域为,且,,故函数既不是奇函数也不是偶函数,A选项错误B选项:函数定义域为,且,,故函数既不是奇函数也不是偶函数C选项:函数定义域为,,故函数为奇函数D选项:函数定义域为,,故函数是偶函数故选D【点睛】本题考查函数奇偶性的定义,在证明函数奇偶性时需注意函数的定义域;还需掌握:奇函数加减奇函数为奇函数;偶函数加减偶函数为偶函数;奇函数加减偶函数为非奇非偶函数;奇函数乘以奇函数为偶函数;奇函数乘以偶函数为奇函数;偶函数乘以偶函数为偶函数12、A【解析】根据对数函数的图象直接得出.【详解】因为,根据对数函数的图象可得A正确.故选:A.二、填空题(本大题共4小题,共20分)13、【解析】利用两角和的正弦公式即可得结果.【详解】因为,,所以,由,,可得,,所以.故答案为:.14、【解析】由同角三角函数关系求出,最后利用求解即可.【详解】由,且得则,则.故答案为:.15、.【解析】根据含有一个量词的命题的否定可得结果【详解】由含有一个量词的命题的否定可得,命题“”的否定为“”故答案为【点睛】对于含有量词的命题的否定要注意两点:一是要改换量词,把特称(全称)量词改为全称(特称)量词;二是把命题进行否定.本题考查特称命题的否定,属于简单题16、①.②.【解析】首先指对互化,求,再求;第二问利用指数运算,对数,化简求值.【详解】,,所以;,,所以故答案为:;三、解答题(本大题共6小题,共70分)17、(1);(2).【解析】(1)根据,两点可求出和周期,再由周期公式即可求出,再由即可求出;(2)根据求出函数的值域,再利用换元法令即可求出函数的取值范围.【详解】(1)根据题意可知,,,所以,解得,所以,又,所以,又,所以,所以(2)因为,所以,所以,所以,令,即,则,当时,取得最小值,当时,取得最大值7,故的取值范围是.【点睛】方法点睛:由图象确定系数,通常采用两种方法:①如果图象明确指出了周期的大小和初始值(第一个零点的横坐标)或第二,第三(或第四,第五)点横坐标,可以直接解出和,或由方程(组)求出;②代入点的坐标,通过解最简单的三角函数方程,再结合图象确定和.18、(1)(2)【解析】分析:(1)由题意结合指数函数的单调性可得,结合函数的单调性和函数的定义域可得不等式的解集为.(2),令,结合反比例函数性质和对数函数的性质可得.详解:(1)由题意得:,∴,∴,解得.(2),令,当时,,,所以,所以.∵,∴的对数函数在定义域内递减,∴,∴.点睛:本题主要考查指数函数的性质,对数函数的性质,换元法及其应用等知识,意在考查学生的转化能力和计算求解能力.19、⑴见解析;⑵见解析.【解析】(1)要证明线面平行,转证线线平行,在△AB1C中,DE为中位线,易得;(2)要证线线垂直,转证线面垂直平面,易证,从而问题得以解决.试题解析:⑴在直三棱柱中,平面,且矩形是正方形,为的中点,又为的中点,,又平面,平面,平面⑵在直三棱柱中,平面,平面,又,平面,平面,,平面,平面,矩形是正方形,,平面,,平面又平面,.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.20、(1);(2)(i)证明见解析;(ii).【解析】(1)根据题意∵为奇函数,∴,令x=1即可求出;(2)(i)验证为奇函数即可;(ii))求出在区间上的值域为A,记在区间上的值域为,则.由此问题转化为讨论f(x)的值域B,分,,三种情况讨论即可.【小问1详解】∵为奇函数,∴,得,则令,得.【小问2详解】(i),∵为奇函数,∴为奇函数,∴函数的图象关于点对称.(ii)在区间上单调递增,∴在区间上的值域为,记在区间上的值域为,由对,总,使得成立知,①当时,上单调递增,由对称性知,在上单调递增,∴在上单调递增,只需即可,得,∴满足题意;②当时,在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减,∴在上单调递减,在上单调递增,在上单调递减,∴或,当时,,,∴满足题意;③当时,在上单调递减,由对称性知,在上单调递减,∴在上单调递减,只需即可,得,∴满足题意.综上所述,的取值范围为.21、(1)2x-y-4=0(2)2x+y-9=0【解析】(1)利用直线l与圆x2+(y-1)2=5相切,,结合直线l不过第二象限,求出a,即可求直线l的方程;(2)直线l1的方程为2x-y+b=0,直线l1过点(3,-1),求出b,即可求出直线l1的方程;利用直线l2与l1关于y=1对称,求出直线的斜率,即可求直线l2的方程【详解】(1)∵直线l与圆x2+(y-1)2=5相切,∴,∵直线l不过第二象限,∴a=2,∴直线l的方程为2x-y-4=0;(2)∵直线l1过点(3,-1)且与直线l平行,∴直线l1方程为2x-y+b=0,∵直线l1过点(3,-1),∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目安全培训试题附答案【培优A卷】
- 职工安全培训试题(完美)
- 公司项目部安全培训试题及参考答案【预热题】
- 职工安全培训试题加解析答案
- 城市快速路互通立交施工设计方案
- 六年级家长会班主任发言稿总结与反思
- 幼儿园爱国教育
- 大型活动现场卫生管理方案
- 食品安全年度工作总结15篇
- 建筑装饰工程建设协议(3篇)
- 数字电子设计报告生理刺激反应时间测试仪
- 5.32.4园路、广场硬质铺装工程检验批质量验收记录
- 相逢在花季――青春期心理健康
- 市场监管局执法文书可编辑版现场检查笔录
- 布草洗涤程序
- 最新小学四年级部编语文上册-第四单元考点梳理(含答案)
- IPC4552中文.doc
- 和泉PLC编程软件
- 《Flash CC动画制作》教学大纲 课程标准 最全最新
- 高喷防渗技术交底
- 大班语言《风在哪里》ppt课件[共12页]
评论
0/150
提交评论