版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知a=log20.3,b=20.3,c=0.30.3,则a,b,c三者的大小关系是()A. B.C. D.2.已知集合,集合,则等于()A. B.C. D.3.设函数y=,当x>0时,则y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值84.若圆锥的高等于底面直径,则它的底面积与侧面积之比是A. B.C. D.5.函数y=的定义域是()A. B.C. D.6.下列各式化简后的结果为cosxA.sinx+πC.sinx-π7.,是两个平面,,是两条直线,则下列命题中错误的是()A.如果,,,那么B.如果,,那么C.如果,,,那么D.如果,,,那么8.已知集合,集合B满足,则满足条件的集合B有()个A.2 B.3C.4 D.19.设全集,集合,,则图中阴影部分表示的集合是()A. B.C. D.10.已知定义域为的函数满足:,且,当时,,则等于A. B.C.2 D.4二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.设是定义在区间上的严格增函数.若,则a的取值范围是______12.若角的终边与角的终边相同,则在内与角的终边相同的角是______13.函数是奇函数,则实数__________.14.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.15.已知,则_____.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数的部分图象如图所示(1)求函数的解析式:(2)将函数的图象上所有的点向右平移个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数的图象①当时,求函数的值域;②若方程在上有三个不相等的实数根,求的值17.求满足以下条件的m值.(1)已知直线2mx+y+6=0与直线(m-3)x-y+7=0平行;(2)已知直线mx+(1-m)y=3与直线(m-1)x+(2m+3)y=2互相垂直.18.设全集,集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,求实数的取值范围.19.已知函数(1)求函数的对称中心;(2)当时,求函数的值域20.如图,在中,斜边,,在以为直径的半圆上有一点(不含端点),,设的面积,的面积.(1)若,求;(2)令,求的最大值及此时的.21.已知,,且,,求的值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】利用指数函数与对数函数的单调性即可得出大小关系【详解】∵a=log20.3<0,b=20.3>1,c=0.30.3∈(0,1),则a,b,c三者的大小关系是b>c>a.故选:D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题2、A【解析】根据题意先解出集合B,进而求出交集即可.详解】由题意,,则.故选:A.3、B【解析】由均值不等式可得答案.【详解】由,当且仅当,即时等号成立.当时,函数的函数值趋于所以函数无最大值,有最小值4故选:B4、C【解析】设圆锥的底面半径为,则高为,母线长则,,,选C.5、A【解析】根据偶次方根的被开方数为非负数,对数的真数大于零列不等式,由此求得函数的定义域.【详解】依题意,所以的定义域为.故选:A6、A【解析】利用诱导公式化简每一个选项即得解.【详解】解:A.sinx+B.sin2π+xC.sinx-D.sin2π-x故选:A7、D【解析】A.由面面垂直的判定定理判断;B.由面面平行的性质定理判断;C.由线面平行的性质定理判断;D.由平面与平面的位置关系判断;【详解】A.如果,,,由面面垂直的判定定理得,故正确;B.如果,,由面面平行的性质定理得,故正确;C.如果,,,由线面平行的性质定理得,故正确;D如果,,,那么相交或平行,故错误;故选:D【点睛】本题主要考查空间中线线、线面、面面间的位置关系,还考查了理解辨析和逻辑推理的能力,属于中档题.8、C【解析】写出满足题意的集合B,即得解.【详解】因为集合,集合B满足,所以集合B={3},{1,3},{2,3},{1,2,3}.故选:C【点睛】本题主要考查集合的并集运算,意在考查学生对这些知识的理解掌握水平.9、B【解析】由图中阴影部分可知对应集合为,然后根据集合的基本运算求解即可.【详解】解:由图中阴影部分可知对应集合为全集,2,3,4,,集合,,,3,,=,=故选:10、D【解析】由得,又由得函数为偶函数,所以选D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、.【解析】根据题意,列出不等式组,即可求解.【详解】由题意,函数是定义在区间上的严格增函数,因为,可得,解得,所以实数a的取值范围是.故答案为:.12、【解析】根据角的终边与角的终边相同,得到,再得到,然后由列式,根据,可得整数的值,从而可得.【详解】∵(),∴()依题意,得(),解得(),∴,∴在内与角的终边相同的角为故答案为【点睛】本题考查了终边相同的角的表示,属于基础题.13、【解析】根据给定条件利用奇函数的定义计算作答.【详解】因函数是奇函数,其定义域为R,则对,,即,整理得:,而不恒为0,于得,所以实数.故答案为:14、【解析】根据条件得到,解出,进而得到.【详解】因为,所以且,所以,解得:,则,,所以.故答案为:15、3【解析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得.【详解】因,所以.故答案为:3.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)①;②.【解析】(1)由图象得A、B、,再代入点,求解可得函数的解析式;(2)①由已知得,由求得,继而求得函数的值域;②令,,做出函数的图象,设有三个不同的实数根,有,,继而得,由此可得答案.【小问1详解】解:由图示得:,又,所以,所以,所以,又因为过点,所以,即,所以,解得,又,所以,所以;【小问2详解】解①:由已知得,当时,,所以,所以,所以,所以函数的值域为;②当时,,令,则,令,则函数的图象如下图所示,且,,,由图象得有三个不同的实数根,则,,所以,即,所以,所以,故.17、(1)(2)或【解析】(1)平行即两直线的斜率相等,建立等式,即可得出答案.(2)直线垂直即两直线斜率之积为-1,建立等式,即可得出答案.【详解】解:(1)当m=0或m=3时,两直线不平行当m0且m3时,若两直线平行,则(2)当m=0或m=时,两直线不垂直当m=1时,两直线互相垂直当m0,1,时,若两直线垂直,则或也可用m(m-1)+(1-m)(2m+3)=0,即m2+2m-3=0,解得m=1,或m=-3.【点睛】本道题目考查了直线平行或垂直的判定条件,注意,当x,y的系数含有参数的时候,要考虑系数是否为0.18、(1);(2)①;②;③.【解析】(1)将代入集合,求出集合和,然后利用交集的定义可求出集合;(2)选择①,根据得出关于实数的不等式组,解出即可;选择②,由,可得出,可得出关于实数的不等式组,解出即可;选择③,求出集合,根据可得出关于实数的不等式,解出即可.【详解】(1)当时,,,,因此,;(2),.选择①,,则或,解得或,此时,实数的取值范围是;选择②,,,则,解得,此时,实数的取值范围是;选择③,,或,解得或,此时,实数的取值范围是.综上所述,选择①,实数的取值范围是;选择②,实数的取值范围是;选择③,实数的取值范围是.【点睛】本题考查交集与补集的混合运算,同时也考查了利用集合的包含关系求参数的取值范围,考查运算求解能力,属于中等题.19、(1)(2)【解析】(1)化简函数,结合三角函数的图象与性质,即可求解;(2)由,可得,结合三角函数的图象与性质,即可求解;【小问1详解】解:由题意,函数,令,解得,所以函数的对称中心为.【小问2详解】解:因为,可得,当时,即时,可得;当时,即时,可得,所以函数的值域为20、(1);(2),有最大值.【解析】由已知可得,.(1)根据解可得答案;(2)由化简为,根据的范围可得答案.【详解】因为中,,,所以,,.又因为为以为直径的半圆上一点,所以.在中,,,.作于点,则,,(1)若,则,因为,所以,所以,整理得,所以,.(2)因为,所以,当时,即,有最大值.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 破解社区管理难题的实施方案计划
- 研学旅行策划与管理(EEPM)(初级)等级认定考试题库大全-下(判断题)
- 女生青春期成长
- 好看的讲义模板下载
- 专题1认识自己学会学习【思维导图考点梳理考点精练】-2023年中考道德与法治一轮高效复习考点梳理归纳与精练(部编版)
- 城市更新项目交通管理方案
- 大型会议室多联机施工方案
- 2021年度教育学章节自测资料
- 普冉煤矿运营成本控制方案
- 幼儿园生成课程
- 《创业投资财富》课件
- 设计水稻育种计划书
- 电梯使用现场类隐患专项排查清单
- 新媒体视听节目制作 第二章 新媒体视听节目的类型与特征
- 版式设计的网格系统
- JCT640-2010 顶进施工法用钢筋混凝土排水管
- 八年级物理第一二章测试题(含答案)
- 两山之路智慧树知到课后章节答案2023年下丽水学院
- 青光眼PPT课件完整版
- 快速消费品制造行业概述
- 类风湿性关节炎综述4572
评论
0/150
提交评论