版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知y=(x-m)(x-n)+2022(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是()A.α<m<n<β B.m<α<n<βC.m<α<β<n D.α<m<β<n2.如图,在正方体中,与平面所成角的余弦值是A. B.C. D.3.已知函数有唯一零点,则()A. B.C. D.14.命题“,”的否定为()A., B.,C., D.,5.已知在△ABC中,cos=-,那么sin+cosA=()A. B.-C. D.6.下列函数既是奇函数又是周期为π的函数是()A. B.C. D.7.若函数的最大值为,最小值为-,则的值为A. B.2C. D.48.已知,,,则的大小关系为()A. B.C. D.9.设,,,则a,b,c的大小关系是()A. B.C. D.10.已知均为上连续不断的曲线,根据下表能判断方程有实数解的区间是()x01233.0115.4325.9807.6513.4514.8905.2416.892A. B.C. D.11.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④12.在中,“角为锐角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____14.设则__________.15.函数的定义域为_________________________16.已知正三棱柱的棱长均为2,则其外接球体积为__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.若集合,,.(1)求;(2)若,求实数的取值范围.18.对于函数,若,则称为的“不动点”,若,则称为的“稳定点”,函数的“不动点”和“稳定点”的集合分别记为和,即,,那么,(1)求函数的“稳定点”;(2)求证:;(3)若,且,求实数的取值范围.19.已知函数(1)求函数的最小正周期和单调递增区间;(2)若在区间上存在唯一的最小值为-2,求实数m的取值范围20.计算:(1);(2)若,求的值21.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数.(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以4为上界的有界函数,求实数的取值范围.22.已知(1)化简;(2)若=2,求的值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】根据二次函数的性质判断【详解】记,由题意,,的图象是开口向上的抛物线,所以上递减,在上递增,又,,所以,,即(也可由的图象向下平移2022个单位得的图象得出判断)故选:C2、D【解析】连接,设正方体棱长为1.∵平面,∴∠为与平面所成角.∴故选D3、B【解析】令,转化为有唯一零点,根据偶函数的对称性求解.【详解】因为函数,令,则为偶函数,因为函数有唯一零点,所以有唯一零点,根据偶函数对称性,则,解得,故选:B4、B【解析】利用含有量词的命题的否定方法:先改变量词,然后再否定结论,判断即可.【详解】解:由含有量词的命题的否定方法:先改变量词,然后再否定结论可得,命题“”的否定为:.故选:B.5、B【解析】因为cos=-,即cos=-,所以sin=-,则sin+cosA=sinAcos+cosAsin+cosA=sin=-.故选B.6、D【解析】先判断函数的奇偶性,再求函数的周期,然后确定选项【详解】是最小正周期为的奇函数,故A错误;的最小正周期是π是偶函数,故B错误;是最小正周期是π是偶函数,故C错误;最小正周期为π的奇函数,故D正确﹒故选:D7、D【解析】当时取最大值当时取最小值∴,则故选D8、A【解析】由题,,,所以的大小关系为.故选A.点晴:本题考查的是对数式的大小比较.解决本题的关键是利用对数函数的单调性比较大小,当对数函数的底数大于0小于1时,对数函数是单调递减的,当底数大于1时,对数函数是单调递增的;另外由于对数函数过点(1,0),所以还经常借助特殊值0,1,2等比较大小.9、C【解析】利用指数函数和对数函数的性质确定a,b,c的范围,由此比较它们的大小.【详解】∵函数在上为减函数,,∴,即,∵函数在上为减函数,,∴,即,函数在上为减函数,,即∴.故选:C.10、C【解析】根据函数零点的存在性定理可以求解.【详解】由表可知,,,令,则均为上连续不断的曲线,所以在上连续不断的曲线,所以,,;所以函数有零点的区间为,即方程有实数解的区间是.故选:C.11、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.12、D【解析】分析条件与结论的关系,根据充分条件和必要条件的定义确定正确选项.【详解】若角为锐角,不妨取,则,所以“角为锐角”是“”的不充分条件,由,可得,所以角不一定为锐角,所以“角为锐角”是“”的不必要条件,所以“角为锐角”是“”的既不充分也不必要条件,故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、{﹣2,4,6}【解析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【点睛】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.14、【解析】先求,再求的值.【详解】由分段函数可知,.故答案为:【点睛】本题考查分段函数求值,属于基础题型.15、(-1,2).【解析】分析:由对数式真数大于0,分母中根式内部的代数式大于0联立不等式组求解x的取值集合得答案详解:由,解得﹣1<x<2∴函数f(x)=+ln(x+1)的定义域为(﹣1,2)故答案为(﹣1,2)点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)16、【解析】分别是上,下底面的中心,则的中点为几何体的外接球的球心,三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)解不等式求出集合,再进行交集运算即可求解;(2)解不等式求集合,根据并集的结果列不等式即可求解.【详解】(1),,;(2),或,,.即实数的取值范围为.18、(1)“稳定点”;(2)见解析;(3)【解析】本题拿出一个概念来作为新型定义题,只需要去对定义的理解就好,要求函数的“稳定点”只需求方程中的值,即为“稳定点”若,有这是不动点的定义,此时得出,,如果,则直接满足.先求出即存在“不动点”的条件,同理取得到存在“稳定点”的条件,而两集合相等,即条件所求出的结果一直,对结果进行分类讨论.【详解】(1)由有,得:,所以函数的“稳定点”为;(2)证明:若,则,显然成立;若,设,有,则有,所以,故(3)因为,所以方程有实根,即有实根,所以或,解得又由得:即由(1)知,故方程左边含有因式所以,又,所以方程要么无实根,要么根是方程的解,当方程无实根时,或,即,当方程有实根时,则方程的根是方程的解,则有,代入方程得,故,将代入方程,得,所以.综上:的取值范围是.【点睛】作为新型定义题,题中需要求什么,我们就从条件中去得到相应的关系,比如本题中,求不动点,就去求;求稳定点,就去求,完全根据定义去处理问题.需要求出不动点及稳定点相同,则需要它们对应方程的解完全一样.19、(1),(2)【解析】(1)用诱导公式将函数化为,然后可解;(2)根据m介于第一个最小值点和第二个最小值点之间可解.【小问1详解】所以的最小正周期,由,解得,所以的单调递增区间为.【小问2详解】令,得因为在区间上存在唯一的最小值为-2,所以,,即所以实数m的取值范围是.20、(1)(2)【解析】(1)根据分数指数幂、对数的运算法则及换底公式计算可得;(2)根据换底公式的性质得到,再根据指数对数恒等式得到,即可得解;【小问1详解】解:【小问2详解】解:,,,21、(1)值域为,不是有界函数;(2)【解析】(1)把代入函数的表达式,得出函数的单调区间,结合有界函数的定义进行判断;(2)由题意知,对恒成立,令,对恒成立,设,,求出单调区间,得到函数的最值,从而求出的值.试题解析:(1)当时,,令,∵,∴,;∵在上单调递增,∴,即在上的值域
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市礼品合同
- 智能化印刷生产施工合同
- 电力系统升级施工合同范本
- 畜牧业用地租赁合同
- 交响乐团指挥聘任合同
- 电影拍摄挖掘机租赁合同
- 体育辅导中心教练聘用合同
- 航天器制造水井租赁合同
- 住宅阁楼装修施工合同
- 天然气开采锅炉安装合同
- GB∕T 20973-2020 膨润土-行业标准
- 深基坑开挖危险源辨识及控制措施
- DB44∕T 1591-2015 小档口、小作坊、小娱乐场所消防安全整治技术要求
- 外国法制史英国法课件
- 致青春几年的放纵换来的是一生的卑微课件
- 加强服务管理 提升金融服务竞争力
- 初中生物说课课件(精选优秀)PPT
- T∕CSAE 237-2021 重型汽车实际行驶污染物排放测试技术规范
- ETL基础及常用技术培训
- 医疗机构电子化注册信息系统(机构版)用户手册
- 最新部编版语文五年级上册第六单元教案
评论
0/150
提交评论