版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.奇函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式f(x)<0的解集是.A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞)2.已知x,y是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若,,,,则,,的大小关系是A. B.C. D.4.设全集,集合,,则A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}5.对任意正实数,不等式恒成立,则实数的取值范围是()A. B.C. D.6.纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是(℃),空气的温度是(℃),经过t分钟后物体的温度T(℃)可由公式得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出,则空气温度是()A.5℃ B.10℃C.15℃ D.20℃7.若,则()A. B.aC.2a D.4a8.已知且点在的延长线上,,则的坐标为()A. B.C. D.9.已知,则函数与函数的图象可能是()A. B.C. D.10.设函数,若,则A. B.C. D.11.关于的不等式对任意恒成立,则实数的取值范围是()A. B.C. D.12.在下列函数中,最小值为2的是()A.(且) B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,且,则_______.14.二次函数的部分对应值如下表:342112505则关于x不等式的解集为__________15.函数的零点为______16.化简:________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,在四边形中,,,,为等边三角形,是的中点.设,.(1)用,表示,,(2)求与夹角的余弦值.18.设函数.(1)当时,求函数的零点;(2)当时,判断的奇偶性并给予证明;(3)当时,恒成立,求m的最大值.19.果园A占地约3000亩,拟选用果树B进行种植,在相同种植条件下,果树B每亩最多可种植40棵,种植成本(万元)与果树数量(百棵)之间的关系如下表所示.149161(1)根据以上表格中的数据判断:与哪一个更适合作为与的函数模型;(2)已知该果园的年利润(万元)与的关系为,则果树数量为多少时年利润最大?20.如图,已知矩形,,,点为矩形内一点,且,设.(1)当时,求证:;(2)求的最大值.21.已知圆,直线.(1)若直线与圆交于不同的两点,当时,求的值.(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.22.已知函数是函数图象的一条对称轴.(1)求的最大值,并写出取得最大值时自变量的取值集合;(2)求在上的单调递增区间.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】考点:奇偶性与单调性的综合分析:根据题目条件,画出一个函数图象,再观察即得结果解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(-∞,-1)∪(0,1)故选A2、C【解析】由充要条件的定义求解即可【详解】因为,若,则,若,则,即,所以,即“”是“”的充要条件,故选:C.3、D【解析】分析:利用指数函数与对数函数及幂函数的行贿可得到,再构造函数,通过分析和的图象与性质,即可得到结论.详解:由题意在上单调递减,所以,在上单调递则,所以,在上单调递则,所以,令,则其为单调递增函数,显然在上一一对应,则,所以,在坐标系中结合和的图象与性质,量曲线分别相交于在和处,可见,在时,小于;在时,大于;在时,小于,所以,所以,即,综上可知,故选D.点睛:本题主要考查了指数式、对数式和幂式的比较大小问题,本题的难点在于的大小比较,通过构造指数函数与一次函数的图象与性质分析解决问题是解答的关键,着重考查了分析问题和解答问题的能力,试题有一定难度,属于中档试题.4、B【解析】根据集合的补集和交集的概念得到结果即可.【详解】全集,集合,,;,故答案为B.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算5、C【解析】先根据不等式恒成立等价于,再根据基本不等式求出,即可求解.【详解】解:,即,即又当且仅当“”,即“”时等号成立,即,故.故选:C.6、B【解析】依题意可得,即,即可得到方程,解得即可;【详解】:依题意,即,又,所以,即,解得;故选:B7、A【解析】利用对数的运算可求解.【详解】,故选:A8、D【解析】设出点的坐标,根据列式,根据向量的坐标运算,求得点的坐标.【详解】设,依题意得,即,故,解得,所以.故选D.【点睛】本小题主要考查平面向量共线的坐标运算,考查运算求解能力,属于基础题.9、D【解析】根据对数关系得,所以函数与函数的单调性相同即可得到选项.【详解】,所以,,不为1的情况下:,函数与函数的单调性相同,ABC均不满足,D满足题意.故选:D【点睛】此题考查函数图象的辨析,根据已知条件找出等量关系或不等关系,分析出函数的单调性得解.10、A【解析】由的函数性质,及对四个选项进行判断【详解】因为,所以函数为偶函数,且在区间上单调递增,在区间上单调递减,又因为,所以,即,故选择A【点睛】本题考查幂函数的单调性和奇偶性,要求熟记几种类型的幂函数性质11、B【解析】当时可知;当时,采用分离变量法可得,结合基本不等式可求得;综合两种情况可得结果.【详解】当时,不等式为恒成立,;当时,不等式可化为:,,(当且仅当,即时取等号),;综上所述:实数的取值范围为.故选:B.12、C【解析】根据基本不等式的使用条件,对四个选项分别进行判断,得到答案.【详解】选项A,当时,,所以最小值为不正确;选项B,因为,所以,所以,当且仅当,即时等号成立,而,所以等号不成立,所以不正确;选项C,因为,所以,当且仅当,即时,等号成立,所以正确;选项D,因为,所以,所以,当且仅当,即时,等号成立,而,所以不正确.故选:C.【点睛】本题考查基本不等式求和的最小值,基本不等式的使用条件,属于简单题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据题意,可知,结合三角函数的同角基本关系,可求出和再根据,利用两角差的余弦公式,即可求出结果.【详解】因为,所以,因为,所以,又,所以,所以.故答案为:.14、【解析】根据所给数据得到二次函数的对称轴,即可得到,再根据函数的单调性,即可得解;【详解】解:∵,∴对称轴为,∴,又∵在上单调递减,在上单调递增,∴的解集为故答案为:15、1和【解析】由,解得的值,即可得结果【详解】因为,若,则,即,整理得:可解得:或,即函数的零点为1和,故答案为1和.【点睛】本题主要考查函数零点的计算,意在考查对基础知识的理解与应用,属于基础题16、-1【解析】原式)(.故答案为【点睛】本题的关键点有:先切化弦,再通分;利用辅助角公式化简;同角互化.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),;(2).【解析】(1)利用向量的线性运算即平面向量基本定理确定,与,的关系;(2)解法一:利用向量数量积运算公式求得向量夹角余弦值;解法二:建立平面直角坐标系,利用数量积的坐标表示确定向量夹角余弦值.【详解】解法一:(1)由图可知.因为E是CD的中点,所以.(2)因为,为等边三角形,所以,,所以,所以,.设与的夹角为,则,所以在与夹角的余弦值为.解法二:(1)同解法一.(2)以A为原点,AD所在直线为x轴,过A且与AD垂直的直线为y轴建立平面直角坐标系,则,,,.因为E是CD的中点,所以,所以,,所以,.设与的夹角为,则,所以与夹角的余弦值为.【点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用18、(1)﹣3和1(2)奇函数,证明见解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定义判断;(3)将时,恒成立,转化为,在上恒成立求解.【小问1详解】解:当时,由,解得或,∴函数的零点为﹣3和1;【小问2详解】由(1)知,则,由,解得,故的定义域关于原点对称,又,,∴,∴是上的奇函数.【小问3详解】∵,且当时,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上单调递增∴,∴,故m的最大值为3.19、(1)更适合作为与的函数模型(2)果树数量为时年利润最大【解析】(1)将点代入和,求出两个函数,然后将和代入,看哪个算出的数据接近实际数据哪个就更适合作为与的函数模型.(2)根据(1)可得,利用二次函数的性质求最大利润.【小问1详解】①若选择作为与的函数模型,将的坐标分别带入,得解得此时,当时,,当时,,与表格中的和相差较大,所以不适合作为与的函数模型.②若选择作为与的函数模型,将的坐标分别带入,得解得此时,当时,,当时,,刚好与表格中的和相符合,所以更适合作为与的函数模型.【小问2详解】由题可知,该果园最多120000棵该吕种果树,所以确定的取值范围为,令,则经计算,当时,取最大值(万元),即,时(每亩约38棵),利润最大.20、(1)见解析(2)【解析】(1)以为坐标原点建立平面直角坐标系,求出各点的坐标,即得,得证;(2)由三角函数的定义可设,,再利用三角函数的图像和性质求解.【详解】以为坐标原点建立平面直角坐标系,则,,,.当时,,则,,∴.∴.(2)由三角函数的定义可设,则,,,从而,所以,因为,故当时,取得最大值2.【点睛】本题主要考查平面向量的坐标表示和运算,考查向量垂直的坐标表示,考查平面向量的数量积运算和三角恒等变换,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(1);(2)直线过定点;(3)【解析】(1)利用点到直线的距离公式,结合点到的距离,可求的值;(2)由题意可知:、、、四点共圆且在以为直径的圆上,、在圆上可得直线,的方程,即可求得直线是否过定点;(3)设圆心到直线、的距离分别为,.则,表示出四边形的面积,利用基本不等式,可求四边形的面积最大值【详解】解:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智能设施安装纯劳务分包合同4篇
- 南京市2025年度房屋买卖合同争议解决条款4篇
- 2025年农业蔬菜大棚承包与农产品品牌授权合同4篇
- 二零二五年度电视机市场分析报告定制合同4篇
- 2025年度农业大数据农资精准采购合同4篇
- 2025年度汽车租赁车辆租赁保险定制服务合同4篇
- 2025年度环保设备制造企业融资合同参考格式4篇
- 2025年度出租车公司车辆运营及驾驶员激励政策合同4篇
- 2025年度电视剧编剧团队聘用合同书4篇
- 二零二五版门窗行业国际市场拓展与出口合同3篇
- 燃气经营安全重大隐患判定标准课件
- JB-T 8532-2023 脉冲喷吹类袋式除尘器
- 深圳小学英语单词表(中英文)
- 护理质量反馈内容
- 山东省济宁市2023年中考数学试题(附真题答案)
- 抖音搜索用户分析报告
- 板带生产工艺热连轧带钢生产
- 钻孔灌注桩技术规范
- 2023-2024学年北师大版必修二unit 5 humans and nature lesson 3 Race to the pole 教学设计
- 供货进度计划
- 弥漫大B细胞淋巴瘤护理查房
评论
0/150
提交评论