




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数,且,若对任意,都有成立,则的值为()A.2022 B.2020C.2018 D.02.已知某几何体的三视图如图所示,则该几何体的体积为A. B.C. D.3.已知函数(,,,)的图象(部分)如图所示,则的解析式是A. B.C. D.4.已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是A. B.C. D.5.将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这样的分割被称为黄金分割,黄金分割蕴藏着丰富的数学知识和美学价值,被广泛运用于艺术创作、工艺设计等领域.黄金分制的比值为无理数,该值恰好等于,则()A. B.C. D.6.已知定义在上的奇函数,满足,当时,,则函数在区间上的所有零点之和为()A. B.C. D.7.若函数的定义域和值域都为R,则关于实数a的下列说法中正确的是A.或3 B.C.或 D.8.如图,一个水平放置的平面图形的直观图是边长为2的菱形,且,则原平面图形的周长为()A. B.C. D.89.下列函数中,以为最小正周期,且在上单调递增的是()A. B.C. D.10.函数fx=lgA.0 B.1C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若关于的方程在上有个不相等的实数根,则实数的取值范围是___________.12.若,则____13.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________14.在平面直角坐标系中,已知点A在单位圆上且位于第三象限,点A的纵坐标为,现将点A沿单位圆逆时针运动到点B,所经过的弧长为,则点B的坐标为___________.15.比较大小:______cos()16.已知,若对一切实数,均有,则___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的值及的单调递增区间;(2)求在区间上的最大值和最小值.18.已知函数(1)求函数的最小正周期和在上的值域;(2)若,求的值19.已知函数(1)证明:;(2)若存在一个平行四边形的四个顶点都在函数的图象上,则称函数具有性质P,判断函数是否具有性质P,并证明你的结论;(3)设点,函数.设点B是曲线上任意一点,求线段AB长度的最小值20.第四届中国国际进口博览会于2021年11月5日至10日在上海举行.本届进博会共有58个国家和3个国际组织参加国家展(国家展今年首次线上举办),来自127个国家和地区的近3000家参展商亮相企业展.更多新产品、新技术、新服务“全球首发,中国首展”专(业)精(品)尖(端)特(色)产品精华荟萃,某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2022年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x千台空调,需另投入资金R万元,且经测算,当生产10千台空调需另投入的资金R=4000万元.现每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完(1)求2022年企业年利润W(万元)关于年产量x(千台)的函数关系式;(2)2022年产量为多少(千台)时,企业所获年利润最大?最大年利润多少?(注:利润=销售额-成本)21.设为定义在R上的偶函数,当时,;当时,,直线与抛物线的一个交点为,如图所示.(1)补全的图像,写出的递增区间(不需要证明);(2)根据图象写出不等式的解集
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用条件求出的周期,然后可得答案.【详解】因为是定义在上的奇函数,且,所以,所以,所以即的周期为4,所以故选:D2、D【解析】解:该几何体是一个底面半径为1、高为4的圆柱被一个平面分割成两部分中的一个部分,故其体积为.本题选择D选项.3、C【解析】根据图象可知,利用正弦型函数可求得;根据最大值和最小值可确定,利用及可求得,从而得到函数解析式.【详解】由图象可知,的最小正周期:又又,且,,即,本题正确选项:【点睛】本题考查根据图象求解三角函数解析式的问题,关键是能够明确由最大值和最小值确定;由周期确定;通常通过最值点来进行求解,属于常考题型.4、B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选5、C【解析】根据余弦二倍角公式即可计算求值.【详解】∵=,∴,∴.故选:C.6、D【解析】推导出函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得出,转化为函数与函数图象交点横坐标之和,数形结合可得出结果.【详解】由于函数为上的奇函数,则,,所以,函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得,则函数在区间上的零点之和为函数与函数在区间上图象交点横坐标之和,如下图所示:由图象可知,两个函数的四个交点有两对关于点对称,因此,函数在区间上的所有零点之和为.故选:D.【点睛】本题考查函数零点之和,将问题转化为两个函数的交点,结合函数图象的对称性来求解是解答的关键,考查数形结合思想的应用,属于中等题.7、B【解析】若函数的定义域和值域都为R,则.解得或3.当时,,满足题意;当时,,值域为{1},不满足题意.故选B.8、B【解析】利用斜二测画法还原直观图即得.【详解】由题可知,∴,还原直观图可得原平面图形,如图,则,∴,∴原平面图形的周长为.故选:B.9、D【解析】根据最小正周期判断AC,根据单调性排除B,进而得答案.【详解】解:对于AC选项,,的最小正周期为,故错误;对于B选项,最小正周期为,在区间上单调递减,故错误;对于D选项,最小正周期为,当时,为单调递增函数,故正确.故选:D10、C【解析】在同一个坐标系下作出两个函数的图象即得解.【详解】解:在同一个坐标系下作出两个函数的图象如图所示,则交点个数为为2.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】数形结合,由条件得在上有个不相等的实数根,结合图象分析根的个数列不等式求解即可.【详解】作出函数图象如图所示:由,得,所以,且,若,即在上有个不相等的实数根,则或,解得.故答案为:【点睛】方法点睛:判定函数的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.12、##0.25【解析】运用同角三角函数商数关系式,把弦化切代入即可求解.【详解】,故答案为:.13、【解析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【详解】作出函数的图象,如图:结合图象可得:,故答案为:.14、【解析】设点A是角终边与单位圆的交点,根据三角函数的定义及平方关系求出,,再利用诱导公式求出,即可得出答案.【详解】解:设点A是角的终边与单位圆的交点,因为点A在单位圆上且位于第三象限,点A的纵坐标为,所以,,因为点A沿单位圆逆时针运动到点B,所经过的弧长为,所以,所以点的横坐标为,纵坐标为,即点B的坐标为.故答案为:.15、>【解析】利用诱导公式化简后,根据三角函数的单调性进行判断即可【详解】cos(π)=cos(﹣4π)=cos()=cos,cos(π)=cos(﹣4π)=cos()=cos,∵y=cosx在(0,π)上为减函数,∴coscos,即cos(π)>cos(π)故答案为>【点睛】本题主要考查函数的大小比较,根据三角函数的诱导公式以及三角函数的单调性是解决本题的关键,属于基础题16、【解析】列方程组解得参数a、b,得到解析式后,即可求得的值.【详解】由对一切实数,均有可知,即解之得则,满足故故答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),单调增区间为,(2)最大值为,最小值为【解析】(1)化简得到,代入计算得到函数值,解不等式得到单调区间.(2)计算,根据三角函数图像得到最值.【小问1详解】,故,,解得,,故单调增区间为,【小问2详解】当时,,在的最大值为1,最小值为,故在区间上的最大值为,最小值为.18、(1)见解析;(2)【解析】(1)由三角函数中的恒等变换应用化简函数解析式为f(x)=,进而得到函数的周期与值域;(2)由(1)知,利用二倍角余弦公式可得所求.【详解】(1)由已知,,,∴又,则所以的最小正周期为在时的值域为.(2)由(1)知,所以则【点睛】本题考查三角函数的图像与性质,考查三角函数的化简求值,考查恒等变形能力,属于中档题.19、(1)证明见解析;(2)函数具有性质P,证明见解析;(3).【解析】(1)直接利用对数的运算求解;(2)取函数图象上四个点,证明函数具有性质P;(3)设(或),求出,再换元利用二次函数求函数的最值得解.【小问1详解】解:【小问2详解】解:由(1)知,的图象关于点中心对称,取函数图象上两点,,显然线段CD的中点恰为点M;再取函数图象上两点,,显然线段EF的中点也恰为点M因此四边形CEDF的对角线互相平分,所以四边形CEDF为平行四边形,所以函数具有性质P小问3详解】解:,则(或),则,记(或),则,记,则,所以,当,即时,20、(1)(2)当2022年产量为100千台时,企业的利润最大,最大利润为8990万元【解析】(1)分段讨论即可;(2)分段求最值,再比较即可【小问1详解】由题意知,当x=10时,所以a=300当时,当时,所以【小问2详解】当0<x<40时,,所以,当x=30时,W有最大值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 债转股投资合同协议格式3篇
- 快递取件授权书格式3篇
- 无机盐在金属表面处理的应用考核试卷
- 农药对非靶标生物的影响考核试卷
- 篮球运动器材选购指南考核试卷
- 印刷技术在艺术品复制中的精细度考核试卷
- 电池制造自动化与智能化考核试卷
- 2025海鲜冷库租赁合同范本
- 2025合同法与侵权法简易速记口诀
- 2025商业房产租赁合同和转租合同模板
- 《单轴面筋脱水机设计报告(论文)》
- 内分泌系统 肾上腺 (人体解剖生理学课件)
- GPS静态数据观测记录表
- 山西省城镇教师支援农村教育工作登记表
- 软件项目周报模板
- 著名中医妇科 夏桂成教授补肾调周法
- VSM(价值流图中文)课件
- 考古发掘中文物的采集与保存课件
- 人工气道的护理刘亚课件
- 专业技术人员
- 拌和场安全检查表
评论
0/150
提交评论